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Abstract

Advanced speech information processing systems require further research on speaker-
dependent information. Recently, a specific system of discrete orthogonal polynomials
{oL(1);1=1,2,...,L }E ,, has been encountered to play a dominant role in a segmental
probability model recently proposed in the speaker-dependent feature extraction from
speech waves and applied to text-independent speaker verification. Here, these speech
polynomials are shown to be the shifted Chebyshev polynomials on a discrete variable
t.(I — 1, L), whose structural and spectral properties are discussed and reviewed in the
light of the recent discoveries in the field of discrete orthogonal polynomials. Conse-
quently various considerations and findings are shown which could greatly simplify the
algorithms inherent to the speaker recognition methods and applications.

1 Introduction.

The classical orthogonal polynomials have been shown to play a relevant role in speech
science; particularly, in research on extraction of speaker-dependent features from speech
waves. This is the case of the Legendre polynomials which have been used for speech
recognition, speech enhancement, speaker adaptation, ... (see e.g. [4, 6, 9, 8]). The discrete
polynomials were firstly used in speech recognition performance by means of the orthogonal-
polynomial-compression technique (Levitt & Rabiner, 1971 [14]; Levitt & Neuman 1991
[13]), which allows us to independently compress different aspects of the speech spectrum.
Indeed, each polynomial corresponds to a different feature of the short-term speech spec-
trum; for example, the polynomials of first and second degrees correspond to the average
slope and quadratic curvature of the spectrum.

Recently, the discrete polynomials have been used in the research of speaker recognition
to face both speaker verification and speaker identification problems. Indeed, it has been
proposed (Liu & Wang, 1996 [11]) a segmental probabilistic model which is based on an or-
thogonal polynomial representation of speech signals. Contrary to the conventional frame-
based probabilistic models, the Liu-Wang model concatenates several consecutive frames
with similar characteristics into an acoustic segment and represents it by an orthogonal
polynomial function. Thus, the speech signal is composed of L successive N —dimensional
feature vectors; that is, a set of N trajectories of length L. Each trajectory is represented by
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a polynomial function. Also, Liu and Wang propose an iterative, self-consistent procedure
that performs recognition and segmentation processes for estimating the segment-based s-
peaker model. Moreover, they illustrate its validity not only in the text-dependent speaker
recognition, where the speaker is required to issue a predetermined utterance, but also in
the text-independent recognition methods which do not rely on a specific text being spoken.
These methods, whose aim is to verify the identity of a claimed speaker, have a training
phase and a verification phase. For a given speech signal of a specific speaker, the number of
segments, the length of each segment and the appropriate segmental probabilistic model are
determined in the training phase. The performance of the model depends on the mixture
number (i.e., number of acoustic segments used for modeling the speaker’s voice character-
istics) and the degrees of the orthogonal polynomials. This degree affects the accuracy of
the model and controls the type of the basic segment for the model and its characteristics.
In fact, the degree of the orthogonal polynomial used in the model determines the smallest
length of the partitioned segment of a given speech signal. Moreover, the degree and the
algebraic properties of the discrete orthogonal polynomials used are crucial for the efficien-
cy (computation time and memory storage) and accuracy of the model. Furthermore, the
discrete orthogonal polynomials that have naturally encountered in some speaker recogni-
tion methods (to be called hereto-forth speech polynomials) correspond to a particular class
of the so-called Hahn polynomials (Szeg6, 1959 [19]; Levit, 1967 [12]; Morrison, 1969 [15];
Chihara, 1978 [3]; Nikiforov, Suslov & Uvarov, 1991 [17]), denoted by A%’ (z, N). This
class is composed by the classical Chebychev polynomials of a discrete variable ¢, (z, N) =
?;O(x, N), which where introduced by the Russian mathematician P. L. Chebyshev in the
past century (see [2]). Until now, however, the study of the algebraic and spectral properties
of the Chebyshev polynomials is a very interesting mathematical topic which receives much
attention in the modern theory of special functions (Nikiforov, Suslov & Uvarov, 1991 [17];
Dette, 1995 [5]; Rakhmanov, 1996 [18]; Kuijlaars & Van Assche, 1997 [10]; Alvarez-Nodarse
& Dehesa, 1998 [1]).

The purpose of this paper is to identify the speech polynomials as shifted Chebyshev
polynomials. In doing so, we observe that some mathematical tools used in some speaker
recognition methods could be considerably reduced (see e.g. the recurrence relation used in
the Liu-Wang paper [11, Appendix A] for the orthogonal polynomials), what can imply a
big reduction and simplification in the algorithms inherent to these methods.

The structure of the paper is as follows. In Section 2 some definitions and statements of
the general theory of orthogonal polynomials are given. Then, in Section 3, the speech poly-
nomials are identified as shifted Chebyshev polynomials. Finally, in Section 4, the spectrum
of zeros of the speech polynomials as a whole is studied by the explicit determination of the
moments-around-the-origin of the distribution of zeros of the speech polynomials.

2 Basic background on orthogonal polynomials.

In this Section we will describe some well known facts from the general theory of orthogonal
polynomials and, specifically, from the Chebyshev polynomials of a discrete variable which
will help us in the next Section to identify the orthogonal polynomials found in the Lie-Wang
model [11].

Let p(z) be a non-constant and non-decreasing function in [a, b] (if any of a, b are 00 we
require that ;(Z00) should be finite). Let us define the scalar product of two real functions
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f and g by the Stieltjes-Lebesgue integral
b
(r.9) = | F@goiduo), (21)
a

where we suppose that f, g are square integrable functions belongs to La (), i.e., f: 2 (x)dp(x)
< 400.

In what follows f, g are continuous in [a, b] with a, b finite real numbers. Two particular
cases of special interest correspond to the ones when p is absolutely continuous positive
functions or a step function with jumps at a finite number of points {z;}¥,, =; € [a,b],
i=1,2,...,N. In these two cases the scalar product (2.1) becomes

N

b
(19) = [ f@a@p(@)ds, and (£.9) = 3 F@dgle)p(e). pl) >0, Vo€ fa,b]
@ i=1
(2.2)
respectively and p is said to be a continuous or discrete weight function, also respectively.

A system of functions fi, fo, ..., fn in La(u) is called an orthogonal system if (f;, f;) =0
for all ¢ # j. Obviously, orthogonal functions are necessarily linearly independent. In the
case when g has a finite number N of point of increase (like in the case of a discrete weight
function mentioned above), n is necessarily finite: n < N.

Given a sequence of linearly independent functions in Lo(u), it is always possible to
obtain an orthogonal sequence. This procedure is called the orthogonalization or Gram-
Schmidt process. The simplest set of continuous functions is the sequence of non-negative
powers 1, z, 22, ..., 2™, .... Since we assume that [a,b] is bounded, then from this set we
can derive an orthogonal set. In fact, if we denote by A,, the following determinant

Ko 241 Tt Hn
Mmoo g2 ot Hp4d

A= T T (2.3)
Mn Hn+1 - H2n

where p, = fab fdu(x), k = 0,1,2,... are the moments associated to p, then the Gram-
Schmidt orthogonalization process leads us to the following set of orthogonal polynomials

Ho M1 - Un
R 5 N NN |
pn(‘r) :An - :aTLIn+"'7 n:071727"'7 an#oa (24)
Hn—1 HMn - H2n—1
1 x DR :1:,”‘

being A, some constant. Tt is straightforward to see that (pg,p,) =0, for all k = 0,1, ..., n,
i.e., the following theorem holds (see e.g. [3, 16, 19])

Theorem 1 Given a distribution function u with moments py, k = 0,1,2, ..., there exists a
uniquely determined up to a constant multiplicative factor sequence of orthogonal polynomials
{pn}, defined by (2.4), each of which have degree exactly equal n, providing that A, > 0 for
allm > 0.
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Remark 1 In the case when p is a positive definite weight function, A, > 0 for all n > 0.

Remark 2 This theorem states that, given a distribution function p with moments puy,
then by the standard Gram-Schmidt orthogonalization process, we can construct one and
only one sequence of polynomials orthogonal with respect to u (i.e., a sequence such that
(Pn,Pm) = 0 if n. # m) provide that, for example, the leading coefficient a,, is fixed. The
most standard normalizations for the orthogonal polynomials correspond to the two follow-
ing choices: (i) a, = 1, in which case one speaks about monic orthogonal polynomials, and

(ii) an = (pn, pn)fé, then one deals with orthonormal polynomials.

Since the polynomials p,, constitute a linearly independent set, then one can expand any
polynomial 7 of degree m in the set {pg,p1, ..., pm }. Using this fact and the the orthogonality
property of the polynomials p,, one obtains

Theorem 2 If {p,}52, is a monic orthogonal polynomial sequence with respect to a weight
function p(x), then the polynomials p, satisfy a three-term recurrence relation of the form

pn(x) = (517 - Cn)pnfl(f) - >‘np7172($)7 p*l(I) =0, pg(il?) =1, n=123,.., (25)
where {cn 22, and {\,}°2L, are given by

(TPp—1,Pn—1)
(Pn—1,Pn-1)

xpnflapn72)

Cp = n>1, and )\n:( n>2,
(Pn—2,Pn—2)

respectively.

In this paper we will deal with the classical discrete Chebyshev monic polynomials
tn(x, N). These polynomials ¢, (z, N) are polynomials that satisfy an orthogonality relation

of the form
N—-1

n!2(N + n)!
t N)t N) =4 2.6
where 0y, is the Kronecker symbol (d,,, = 1 if n = m and 0 elsewhere) and (a), =

a(a+1)---(a+mn —1) denotes the Pochhammer symbol. That is, they are orthogonal with
respect to a distribution function u, which is a step function with N jumps at the points
x =0,1,..., N — 1 but in this case, as we already pointed out (see e.g. [19, page 24]), they
form a finite family of orthogonal polynomials.

These polynomials satisfy the three-term recurrence relation (2.5) with coefficients

N1 (- 1))
= ’ " (e - )2 —1]

- (2.7)

Moreover, they form a very important special subclass of the Hahn polynomials h?{’ﬁ (z,N),
[16, 17]: that with o = 8 = 0.

3 Identification of the speech polynomials
In the Lee-Wang model [11, Section 3.1] a sequence of orthogonal polynomials ¢~ (1) is intro-

duced to regenerate a time sequence of L—length feature vectors. This family of polynomials
satisfy an orthogonality relation [11, Appendix A, Eq. (48)]

L
> ohDer(l) =0, n#k nk=0,1,2.,R (3.1)
=1
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Obviously, the above orthogonality relation corresponds to the discrete scalar product
(2.2). Then, theorem 1 states that the polynomials ¢Z(I) are uniquely determined up to a
constant factor. Moreover, since the distribution function y is a step function with L jumps
at points z = 1,2, ..., L, the family ¢%(I) is a finite family, i.e., in (3.1) R < L — 1.

If we now compare the orthogonality relation (3.1) with (2.6), one can easily arrive to the
conclusion that the speech polynomials ¢Z (1) are proportional to the Chebyshev polynomials
tn(l —1,L). In fact, making the change of variable z — [ — 1 in (2.6)

L—1
0= tn(z,L)tp(z, L) = Zt Lyty(l—1,L), n#k, nk=01,2..L-1,
x=0

we arrive to (3.1). Moreover, the square norm of the ¢%, denoted in [11, Eq. (38)] by ®%,
has the explicit form

n1?(L +n)!
Z¢" )9 (1) (2n—|—1)(L—n—1)(n+1)

For simplicity, let us consider the monic polynomials, i.e., the polynomials ¢L () =
[™ + ---. With this normalization, and using the the three-term recurrence relation for
the Chebyshev polynomials (2.7), we obtain that the speech polynomials ¢L(I) satisfy a
three-term recurrence relation of the form

n—1)2[L2 - (n—
it = (1- 2 gy - e P g

which is nothing else that the relation (50) in the Liu-Wang model [11]. Most important is
to remark that the a and /3 values of this model [11] (see Egs. (51) and (52) in [11]) reduce
to

(n = 12[L? = (n — 1)?]

4[4(n — 1)2 — 1]
Obviously, from the properties of the Chebyshev polynomials [5, 17, 19], one can obtain a
lot of properties for the ¢Z(1). In fact

0[:0, B:_

1. Second order difference equation

(I —=1)(L—14+1) Agdk(l) + (L +1—20) A ¢E(l) +n(n + 1)pE (1) =0,
Af(z) = flx+1)— f(z), and v f(z)=f(z) - f(z—1).

2. Explicit formula

Ly~ (=D" ~ k! TL-l+k+1)I(n+1—-k)
¢"()_(n+1)nk:0( )k!(n—k)!F(L—n—l+k+1)I‘(l—k)’
oL (1) = (—1)" n!l(L —1)! qSL(L): n!(L —1)!

(n+1)p(L—n—1)V (n+1)p(L—n—1)"

3. Hypergeometric representation

sk = 8™

1-l,n+1, —n ‘)
1),
(n+1),

3F2( 1-L,1

where the hypergeometric function ,F, is defined by

F a1,a2,...,0p
PTAN by, by, by

= (a)k(ag)k - - (ap)k @
x) a z% (01)k(b2)g - - - (b:)k Kt
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4. Generating function

L—-1
;(”(7;)12)n¢5(,)zn:1F1(l—1N 2)iFs 1Il 2), 1=1,2,..,L

5. Symmetry property

6. Dette inequality
—n
|6 (1)] < ——==.

From the above expressions we obtain the following expression for the five first ¢%

g =1,  gl() =L 41, gl = THRED (1) 402,

6
2
(]%/(l) — _((1+L)(22J6L)(3+L) + (11+151ﬁ+6L ) I — 3(1;[/) l2 + l3,
2 2
¢£(l) _ (1+L>(2+L%(()3+L>(4+L) B (1+L)(10-7|-7L+2L ) I+ (17+21§,+9L ) 2 _9 (1+L) B,
2 3 4 2
¢§(l) _ _(1+L)(2+L)(3225)(4+L)(5+L) n (274+525L+3651L26+105L +15L%) 1_ 5(1+L)(5;3L+L ) 124

5(8+9L+4L2)
9

(B ML) gty g5

The graphical representation of these five polynomials are shown in 1a and 1b for L = 7
and L = 12, respectively.

g (), L=7 (a) (), L=12 (b)
20 300

10 200
100
| p—
—100 8 0 2
-10 —200
_20 —-300

Figure 1: The speech polynomials ¢%, n =1,2,3,4,5 and L = 7 and 12

4 Spectral moments of the speech polynomials.

Some important spectral characteristics of the speech polynomials are the moments of their
zeros, which are defined by

1 n
1o = 1, u;,gm:ﬁzngn, m=1,2,.,L-1, n<L-1, (4.2)
k=1
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where . ,,, k = 1,2, ...,n denotes the zeros of the polynomial ¢, To obtain these quantities
we can use the method given in [1]. In this way we have

n—sj+1 L-l—l J (i+k—1)2[L2—(i+k—1)2] Tk
ZFTN’lv-- T e ZH[ ] H[ 4[4(2i + 2k — 1)2 — 1] ] ’

i=1 k=1 k=1

where s denotes the number of non-vanishing r; which are involved in each partition of m.
The first summation runs over all partitions (r{,71,...,75 1) of the number m such that

(3]
1. R' +2R = m, where R and R’ denote the sums R = r; and R = Z T, Oor

w|3

2. Ifr; =0, 1 <i<[%], then r, =7, =0 for each k£ > i and
3. [2] =2 or [2] = 2L for m even or odd, respectively.
The factorial coefficient F' is defined by

! ! ! Iy
F(r,m1,m, ey Ty 15 Tp—1,Tp) =

1 (4.4)

_m(r'1+r1—1)! pl:[(ri L+l = D (rp1 + 1y — 1)1
(rici — )lrilrl! (rp—1 — 1)lr! ’

AT
rilrg!
IR i=2

with the convention o = r, = 1. For the evaluation of these coefficients, we must take into
account the following convention

F(Tllalrla'réa'rZ " p 170 0) (7“,1,7“1,7“12,7“2,,,,7“;)_1).
Then, the first few spectral moments of ¢Ls have the simpler expressions

)y L+1 oy (L4+3LA+L)+ (2+3L)n+2n2 —n®

Ho =7y H2 7 24n — 12

iy  (1+L)(—2L—-4L*+4Ln+5L%n+2n? —n3)
Hs == 16n — 8 '

These quantities give different dispersion measures of the distribution of zeros of the

speech polynomials. The centroid of the distribution is //1("), and the variance o

to

is equal

(n—1) BL*+n—n?—1)

P = () = 27 — 12

0 = [y 1

Also, it turns out that the skewness 7; vanishes and the excess or kurtosis is positive. The
former is a straightforward consequence of the symmetric nature of the distribution while
the latter indicates that the distribution of the zeros of the speech polynomials are sharper
around the centroid than a Gaussian distribution of the same variance.
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