
Linearization and onnetion problems for disretehypergeometri polynomialsR. �Alvarez-Nodarse 1Departamento de An�alisis Matem�atio, Universidad de SevillaApdo. 1160, E-41080 Sevilla, SPAIN andInstituto Carlos I de F��sia Te�oria y ComputaionalUniversidad de Granada. E-18071 Granada, SPAIN.January 8, 2000AbstratIt is well known the importane of disrete polynomials not only for their mathematialnature but by their several appliations in several branhes of the atual sienes. The main aimof the present talk is to present a \relative simple" algorithm for solving the linearization probleminvolving ertain families of disrete q-polynomials (this kind of problems an appear in somespei� physial systems). Conrete examples of non-orthogonal families of Pohhammer andtheir q-analogues, as well as more ompliated examples will be presented. Finally, omparisonwith other alternative approahes will be given.1 IntrodutionThe expansion of any arbitrary disrete polynomial qm(x) in series of a general (albeit �xed) setof disrete hypergeometri polynomial fpn(x)g is a matter of great interest, solved only for somepartiular lassial ases (for a review see [13, 18, 31℄ up to the middle of seventies and [9, 59, 62℄,sine then up to now). This is partiularly true for the deeper problem of linearization of a produtof any two disrete polynomials. Usually, the determination of the expansion oeÆients in thesepartiular ases required a deep knowledge of speial funtions and, at times, ingenious indu-tion arguments based in the three-term reurrene relation of the involved orthogonal polynomials[13, 14, 15, 16, 17, 20, 25, 27, 29, 30, 31, 38, 41, 42, 50, 54, 64, 65, 67℄. Only reently, general andwidely appliable strategies begin to appear [9, 10, 11, 12, 24, 33, 37, 40, 43, 45, 44, 47, 48, 49, 59,61, 62, 63, 68℄.One of the reasons for this inreasing interest is the appliations of suh kind of problems inseveral branhes of the Mathematis and Physis. For example, Gasper in his paper [31℄, writeThe solution to many problems an be shown to depend on the determination of when aspei� funtion is positive or nonnegative. ...Sometime the problem an be redued to a simpler one involving fewer parameters or it an betransformed into another problem that is easier to handle. For example, onsider a two variableproblem whih onsisting of proving Xn anpn(x)pn(y) � 0; (1.1)where pn(x) is a sequene of funtions and x and y satisfy appropriate restritions. If there isan integral representation of the formpn(x)pn(y) = Z pn(z)d�x;y(z); d�x;y(z) � 0;1Phone: +34 954-55-79-97, Fax: +34 954-55-79-72. E-mail: ran�ia.es1



2 Linearization and onnetion problems for disrete hypergeometri polynomialsthen the problem (1.1) an (at least formally) be redued to the one variable problemXn anpn(x) � 0;...... it may be possible to simplify the problems of the typeZ pn(x)pm(x)d�(x) � 0by using formulas of the formspn(x)pm(x) =Xk a(k;m; n)Pk(x); a(k;m; n) � 0; (1.2)pk(x) =Xj b(j; k)qj(x); b(j; k) � 0; (1.3)...Nine years after, one of the most famous onjeture: The Bieberbah onjeture (janj � n) foranalyti and univalent funtions of the form f(z) = z +P1n=2 anzn in jzj < 1, has been solved byLouis de Branges using an inequality proved by Askey and Gasper in 1976 [19℄ (see [21℄ for moredetails)nXk=0P�;0k (t) = (�+ 2)nn! 3F2 �n; n+ �+ 2; �+22�+32 ; �+ 1 �����t! � 0; 0 � t < 1; � > �2; (1.4)where (a)n is the Pohhammer symbol and P�;�n (x) denotes the Jaobi polynomialsP�;�n (x) = (�+ 1)nn! 2F1 �n; n+ �+ � + 1�+ 1 �����1� x2 ! :Expansions of type (1.3) are usually alled as onnetion or projetion formulas while thoseof type (1.2) are referred to linearization formulas and the orresponding oeÆients b(j; k) anda(k;m; n) are known as onnetion and linearization oeÆients [13, 18℄. Notie that, sine theinvolved hypergeometri series in (1.4) is terminating, i.e., has a �nite number of terms, the aboveproblem an be onsidered as a onnetion problem between two families of polynomials where allthe onnetion oeÆients are positive (and equal to 1 in this example). So the Gasper's wordsabout the importane in appliations of the onnetion and linearization problems, and the posi-tivity of the orresponding oeÆients, beome very atual and of interest.Here in this work we will use a di�erent notation for the onnetion mn and linearization jmnoeÆients, i. e., the oeÆients on the expansions [18℄qm(x) = mXn=0 mnpn(x); (1.5)qm(x)rj(x) = m+jXn=0 jmnpn(x); (1.6)respetively, where qm(x) and rj(x) are any mth-degree and jth-degree polynomials, and fpng de-notes an arbitrary set of polynomials.The �rst who onsidered the linearization problem for disrete polynomials (notie that in thede Branges's proof the \ontinuous" Jaobi polynomials have been used) was Eagleson in 1969



R. �Alvarez-Nodarse 3for Kravhuk polynomials [27℄. Later on, Gasper [31℄ study the onnetion problem for the Hahnh�;�(x;N) polynomialsh;�j (x;M) = jXn=0 jn h�;�n (x;N); j � minfN � 1;M � 1g;and ompletely solved it (the partiular ase N = M , of interest beause jn � 0, he solved oneyear earlier in [30℄), from where, by limiting proess it is possible to obtain the onnetion oeÆ-ients for Jaobi polynomials as well as for other ontinuous and disrete families (see [30, 31℄ forfurther information on this). Some years later, Askey and Gasper [20℄ onsidered the linearizationproblem when the involved polynomials were the disrete polynomials of Hahn, Meixner Kravhukand Charlier (for a review on disrete polynomials see [51, 52℄) but only in the speial ase whenall rm, qj and pn belong to the same family with the same parameters (in [31℄ some preliminaryresults regarding to the positivity of suh oeÆients were disussed).In all these ases, ontinuous and disrete, the proofs were based on very spei� harateristiof the involved families, partiularly their hypergeometri representation and generating funtionshave been exploited for �nding the orresponding solution.It is important to remark that, even in the ase when it is possible to ompute expliitly theonnetion or the linearization oeÆients, not always is easy to show that they are nonnegativewhih were important as we already pointed out. This led to a reurrent method, i.e., to �nd adi�erene equation for the oeÆients mn and jmn, respetively, and from it to dedue their nonnegativity. The �rst who did it was Hylleraas [38℄ in 1962 for a produt of two Jaobi polynomials.In fat Hylleraas was able to solve the obtained reurrene relation for some speHylleraasial asesand prove the non negativity of the oeÆients in some of these ases. Later, this method hasbeen used by Askey and Gasper [13, 16, 17, 20℄ to prove the non negativity of the linearizationoeÆients for ertain families of orthogonal polynomials.More reently, Ronveaux, Zarzo, Area and Godoy [10, 33, 61℄, developed a reurrent method,alled NaViMa algorithm, for solving the onnetion problem (1.5) for all families of lassial poly-nomials, as well as some speial kind of linearization problem and used it for solving di�erentproblems related with the assoiated, Sobolev-type polynomials, et [34, 36, 60℄. Although, theyuse it only for solving a very speial linearization problem, it an be easily extended for solvingthe general problem (1.6) [24, 44℄. Let us point out that there is a very similar algorithm for �nd-ing the reurrene relation for both, onnetion and linearization oeÆients due to Lewanowiz[43, 45, 47℄. The most important tool in the both aforesaid algorithms was the struture relations(or Salam-Chihara haraterization) that the polynomials pn in (1.5) and (1.6) satisfy.Both problems, onnetion and linearization, are of great interest also in Physis. For example,for the 2l�pole transitions in hydrogen-like atoms (and other related systems) the radial part ofthe probability is proportional to integrals of the formT 1 2l = Z 10 [L2l1+1n1 (�1r)L2l2+1n2 (�2r)℄rme�rdr;where Lln are the Laguerre polynomials. This kind of integrals also appears in the theory ofMorse osillators as well as in transitions for spherial-symmetri systems [54℄. Furthermore, forspherial-symmetri the Wigner-Ekkart theorem [28, 66℄ allows to write the matrix elements ofertain irreduible operators in terms of produts of two (or more) 3j symbols (Hahn and dualHahn polynomials [52℄), 6j symbols (Raah polynomials [52℄), et as well as their q�analogues.To onlude this introdution we need to say that in the world of q�polynomials [22, 32, 39, 52,and referene ontained therein℄ there are not so many results onerning to these problems. One



4 Linearization and onnetion problems for disrete hypergeometri polynomialsof the �rst who was interested on this was Rogers [57, 58℄ who used a q�analogue of the onnetionformula for Jaobi polynomials P ;n (x) = P[n=2℄j=0 j;nP �;�n�2j(x), n;j � 0, for the q�ultraspherialpolynomials to prove some Rogers-Ramanujan identities. Also, very reently, this problem has beenonsidered in [7, 8, 46℄ for q�polynomials in the exponential lattie x(s) = qs [5, 53, 52℄, wherethe authors obtained reurrene relations for the oeÆients in (1.5) and (1.6). Again, in theseworks the use of the struture relations plays a fundamental role. But not for any arbitrary familyof q�polynomials there exist suh relations. In [5℄ it is proven that all families of q�polynomialson the exponential lattie x(s) = 1qs + 3 satisfy suh a relation, but for the general lattiex(s) = 1qs + 2q�s + 3 [22, 52℄ the problem is still open. Then, the following question naturallyarises: What to do in ase when we do not have struture relations? This question was solved forthe ontinuous ase in [12, 63℄ and for the disrete ase in [9℄.2 The NAVIMA algorithm.In this setion we will desribe a reurrent algorithm for �nding the onnetion oeÆients in theexpansion (1.5) for lassial polynomials.This method uses the following properties of the lassial polynomials:1. A seond order di�erential equation:�(x)p00n(x) + �(x)p0n(x) + �npn(x) = 0; deg � � 2; deg � = 1; (2.1)2. A struture relation�(x)p0n(x) = ~�npn+1(x) + ~�npn(x) + ~npn�1(x); n � 0; p�1 � 0; (2.2)and a three-term reurrene relationxpn(x) = �npn+1(x) + �npn(x) + npn�1(x): (2.3)Also the qm family satisfy equations of the same type�(x)q00m(x) + �(x)q0m(x) + �mqm(x) = 0; � � 2; deg � = 1; (2.4)�(x)q0m(x) = ~�mqm+1(x) + ~�mqm(x) + ~mqm�1(x); m � 0; q�1(x) � 0; (2.5)xqm(x) = �mqm+1(x) + �mqm(x) + mqm�1(x): (2.6)Let us desribe the main idea of this method.First of all, we apply the operator L2 : P! P de�ned byL2[�(x)℄ = �(x)d2�(x)dx2 + �(x)d�(x)dx + �m�(x)to both sides of (1.5). Sine (2.4),0 = mXn=0 mn ��(x)p00n(x) + �(x)p0n(x) + �mpn(x)� :Next, we multiply both sides by � and use (2.1) and (2.2). This yields0 = mXn=0 mn n[�(x)�m � �(x)�n℄pn(x)� �(x)�(x)p0n(x) + �(x)[~�npn+1(x) + ~�npn(x) + ~npn�1(x)℄o :



R. �Alvarez-Nodarse 5To eliminate the term p0n, we again multiply by �, and use the (2.2). Thus,0 = mXn=0 mnn�(x)[�(x)�m � �(x)�n℄pn(x) + [� (x)�(x) � �(x)�(x)℄[~�npn+1(x) + ~�npn(x) + ~npn�1(x)℄o:Now, taking into aount that � , � , � and � are polynomials of �rst and seond degree (at most),and using the reurrene relation (2.3) we obtain an expression of the form0 = MXn=0F [m0; :::; mn℄pn(x):Sine deg � ould be equal 2, then we obtain a reurrene of order 8 (at most):m+4Xk=m�4 f [m;n; pn; qm℄mn = 0:Remark 1: Notie that to obtain the reurrene relation we have multiply two times by �, whih,obviously arti�ially inrease the order of the reurrene.Remark 2: Obviously, the same proedure an be applied to the disrete ase, sine there are theorresponding analogues of (2.1) and (2.2).Remark 3: It is possible to get the minimal order for the reurrene relation if we use also thefollowing relation for the lassial polynomials pnpn(x) = anp0n+1(x) + bnp0n(x) + np0n�1(x):This yields to a reurrene of order 4 instead of the above 8-th order one (see [10, 33℄).Remark 4: Notie that the algorithm remains valid if qm is any polynomial satisfying a lineardi�erential equation with polynomials oeÆients. This implies that the above algorithm an beused for solving also the linearization problem (1.6) for lassial orthogonal polynomials as it ispointed out in [33℄.Before desribing the q�analogue of the NAVIMA algorithm [8℄, we need to introdue somenotations and de�nitions.3 Properties of the q�polynomials.Here we will summarize some of the properties of the q-polynomials [52℄ useful for the rest of thework.Let us onsider the seond order di�erene equation of hypergeometri type for some lattiefuntion x(s), ��(x(s)) 44x(s� 12 )5y(s)5x(s) + ��(x(s))2 �4y(s)4x(s) + 5y(s)5x(s)�+ �y(s) = 0;5f(s) = f(s)� f(s� 1);4f(s) = f(s+ 1)� f(s) ; (3.1)where5f(s) and4f(s), denote the bakward and forward �nite di�erene derivatives, respetively,��(x) and ��(x) are polynomials in x(s) of degree at most 2 and 1, respetively, and � is a onstant.



6 Linearization and onnetion problems for disrete hypergeometri polynomialsUsually the above equation is written in the form [52, 51℄:�(s) 44x(s� 12 )5y(s)5x(s) + �(s)4y(s)4x(s) + �y(s) = 0;�(s) = ��(x(s))� 12 ��(x(s))4 x(s� 12); �(s) = ��(x(s)): (3.2)Notie that �(s) and �(s) are polynomials in x(s) of degree at most 2 and 1, respetively. It is im-portant to remark that the above di�erene equations have polynomial solutions of hypergeometritype i� x(s) is a funtion of the formx(s) = 1(q)qs + 2(q)q�s + 3(q) = 1(q)[qs + q�s��℄ + 3(q); (3.3)where 1, 2, 3 and q� = 12 are onstants whih, in general, depend on q [22, 52, 53℄.In the espeial ase when x(s) = s, Eq. (3.1) beomes the lassial seond order di�ereneequation of hypergeometri type for the uniform lattie:�(x)54y(x) + �(x)4 y(x) + �y(x) = 0 ; (3.4)Usually, the equation (3.2) is written in the ompat or selfadjoint form44x(s� 12 ) ��(s)�(s)5y(s)5x(s)�+ ��(s)y(s) = 0; (3.5)where �(s) is the solution of the Pearson-type di�erene equations44x(s� 12 ) [�(s)�(s)℄ = �(s)�(s) (3.6)The polynomial solutions of (3.2) is determined by the analogue of the Rodrigues Formula [52,page 66, Eq. (3.2.19)℄Pn(s)q = Bn�(s) 5(n) [�n(s)℄; 5(n) � 55x1(s) 55x2(s) : : : 55xn(s) ; (3.7)where the funtion �n(s) is given by�n(s) = �(s+ n) nYi=1 �(s+ i); (3.8)and xm(s) = x(s+ m2 ): (3.9)>From the (3.7) as well as the expression [52, Eq. (3.2.28), page 68℄ gives5(n)f(s) = nXk=0(�1)n�k [n℄q![k℄q![n� k℄q! nYl=0 5x(s+ k � n�12 )5x(s+ k�l+12 ) f(s� n+ k): (3.10)we an obtain and expliit expression for the polynomials Pn(s)qPn(s)q = Bn nXm=0 [n℄q!(�1)m+n[m℄q![n�m℄q! 5x(s+m� n�12 )nYl=05x(s+ m�l+12 ) �n(s� n+m)�(s) ; (3.11)



R. �Alvarez-Nodarse 7whih, with the help of (3.6)transforms [53℄Pn(s)q = Bn nXm=0 [n℄q!(�1)m+n[m℄q![n�m℄q! 5x(s+m� n�12 )nYl=05x(s+ m�l+12 )�� n�m�1Yl=0 [�(s� l)℄m�1Yl=0 [�(s+ l) + �(s+ l)4 x(s+ l � 12 )℄: (3.12)
Here and throughout the paper [n℄q denotes the so alled q-numbers and [n℄q! are the q-fatorials[n℄q = q n2 � q�n2q 12 � q� 12 ; [n℄q! = [1℄q[2℄q � � � [n℄q:These polynomial solutions Pn(s)q orrespond to some values of �n [52, 53℄�n = �[n℄q n12 �qn�1 + q�n+1� ~� 0 + [n� 1℄q ~�002 o ; (3.13)where (see Eq. (3.2)) ~�(s) = ~�002 x(s)2 + ~�0(0)x(s) + ~�(0); and ~�(s) � � 0x(s) + �(0).Also for the di�erene derivatives ykn(s)q of the polynomial solution Pn(s)q, de�ned byykn(s)q = 44xk�1(s) 44xk�2(s) : : : 44x(s) [Pn(s)q℄ � 4(k)[Pn(s)q℄ ; (3.14)a Rodrigues-type formula holdsykn(s)q = 4(k)Pn(s)q = AnkBn�k(s) 5(n)k [�n(s)℄; (3.15)where the operator 5(n)k is de�ned by5(n)k f(s) = 55xk+1(s) 55xk+2(s) � � � 55xn(s) [f(s)℄;and Ank = [n℄q![n� k℄q! k�1Ym=0( q 12 (n+m�1) + q� 12 (n+m�1)2 ! ~� 0 + [n+m� 1℄q ~�002 ) == [n℄q![n� k℄q! akBk ; (3.16)where an denotes the leading oeÆient of the polynomial Pn.Of speial interest are the \disrete" orthogonal q-polynomials, i.e., polynomials with a disreteorthogonality b�1Xsi=aPn(x(si))qPm(x(si))q�(si)4 x(si � 12) = Ænmd2n; si+1 = si + 1; (3.17)where �(x) is a solution of the Pearson-type equation (3.6), and it is a non-negative funtion (weightfuntion), i.e., �(si)4 x(si � 12) > 0 (a � si � b� 1);



8 Linearization and onnetion problems for disrete hypergeometri polynomialssupported on a ountable subset of the real line [a; b℄ (a; b an be �1). The orthogonality relation(3.17) an be obtained from the di�erene equation (3.2), providing that the following boundaryonditions �(s)�(s)xk(s� 12)�����s=a;b = 0; k = 0; 1; 2; ::: ; (3.18)hold [52, 53℄, where the weight funtion �(s) is a solution of the Pearson-type equation (3.6). Notiethat the above boundary ondition (3.18) is valid for k = 0. Moreover, if we assume that a is �nite,then (3.18) is ful�lled at s = a providing that �(a) = 0 [52, x3.3, page 70℄. In the following we willassume that this ondition holds. The squared norm in (3.17) is given by [52, Chapter 3, Setion3.7.2, pag. 104℄ d2n = (�1)nAnnB2n b�n�1Xs=a �n(s)4 xn(s� 12 ): (3.19)As a onsequene of the orthogonality, the q�orthogonal polynomials satisfy the following three-term reurrene relations (TTRR)x(s)Pn(s)q = �nPn+1(s)q + �nPn(s)q + nPn�1(s)q; (3.20)with the initial onditions P�1(s)q = 0; P0(s)q = 1:In the most general ase, the solution of the q-hypergeometri equation (3.2) orresponds tothe ase �(s) = A[s� s1℄q[s� s2℄q[s� s3℄q[s� s4℄q; A = onst 6= 0;�(s) + �(s)4 x(s� 12) = A[s� �s1℄q[s� �s2℄q[s� �s3℄q[s� �s4℄q: (3.21)and has the form [53℄Pn(s)q = Bn A1(q)q��2 �2q!n (s1 + s2 + �jq)n(s1 + s3 + �jq)n��(s1 + s4 + �jq)n 4F30B� �n; 2�+ n� 1 + 4Xi=1 si; s1 � s; s1 + s+ �s1 + s2 + �; s1 + s3 + �; s1 + s4 + � ; q ; 11CA ; (3.22)
or Pn(s)q = Bn� �A1(q)q��5q�n q�n2 (3s1+s2+s3+s4+ 3(n�1)2 )(qs1+s2+�; q)n��(qs1+s3+�; q)n(qs1+s4+�; q)n 4'30B� q�n; q2�+n�1+ 4Xi=1 si ; qs1�s; qs1+s+�qs1+s2+�; qs1+s3+�; qs1+s4+� ; q ; q1CA : (3.23)
where �q = q 12 � q� 12 , the q-hypergeometri funtion pFq and the basi hypergeometri serie p'qare de�ned by [4℄rFp� a1; a2; :::; arb1; b2; :::; bp ; q ; z� = 1Xk=0 (a1jq)k(a2jq)k � � � (arjq)k(b1jq)k(b2jq)k � � � (bpjq)k zk(1jq)k h��kq q 14k(k�1)ip�r+1; (3.24)



R. �Alvarez-Nodarse 9and r'p� a1; a2; :::; arb1; b2; :::; bp ; q ; z� = 1Xk=0 (a1; q)k � � � (ar; q)k(b1; q)k � � � (bp; q)k zk(q; q)k h(�1)kq k2 (k�1)ip�r+1 ; (3.25)respetively, and (ajq)k = k�1Ym=0[a+m℄q; (a; q)k = k�1Ym=0(1� aqm): (3.26)Here also we will deal with the q�polynomials in the exponential lattie x(s) = 1qs + 3. Inthis ase the above representations transform [53℄�(s) = �A(qs�s1 � 1)(qs�s2 � 1);�(s) + �(s)4 x(s� 12 ) = �A(qs��s1 � 1)(qs��s2 � 1): (3.27)Pn(s)q = � �A�q1 �nBnq�n2 (�s1+�s2�n�12 )(s1 � �s1jq)n(s1 � �s2jq)n ��3F2� �n; s1 + s2 � �s1 � �s2 + n� 1; s1 � ss1 � �s1; s1 � �s2 ; q; q 12 (s�s2)� = (3.28)= �� �A�q1 �nBnq�n2 (s1+s2+n�12 )(s1 � �s1jq)n(s2 � �s1jq)n ��3F2� �n; s1 + s2 � �s1 � �s2 + n� 1; s� �s1s1 � �s1; s2 � �s1; q; q 12 (s��s2) � ; (3.29)or, in terms of the basi hypergeometri series [53℄Pn(s)q = Bn �A1(q 12 � q� 12 )!n q�n(n�1)4 �ns1(qs1��s1 ; q)n(qs1��s2 ; q)n��3'2� q�n; qs1+s2��s1��s2+n�1; qs1�sqs1��s1 ; qs1��s2 ; q ; qs�s2+1� = (3.30)
= Bn � �A1(q 12 � q� 12 )!n q� 3n(n�1)4 �n(s1+s2��s1)(qs1��s1 ; q)n��(qs2��s1 ; q)n 3'2� q�n; qs1+s2��s1��s2+n�1; qs�s1qs1��s1 ; qs2��s1 ; q ; qs�s2+1� : (3.31)Finally, the following relations holds for the q�polynomials in the exponential lattie x(s) = 1qs+3.1. The �rst struture relation�(s)5Pn(s)q5x(s) = ~SnPn+1(s)q + ~TnPn(s)q + ~RnPn�1(s)q; (3.32)2. The seond struture relation[�(s) + �(s)4 x(s� 12 )℄4Pn(s)q4x(s) = SnPn+1(s)q + TnPn(s)q +RnPn�1(s)q; (3.33)



10 Linearization and onnetion problems for disrete hypergeometri polynomialsTable 1: Main data for the q-Charlier polynomials in the lattie x(s) = qs�1q�1 .Pn(s)q (�)n (s)q ; x(s) = qs�1q�1(a; b) [0;1)�(s) �seq[(1� q)�℄�q(s+ 1) ; � > 0; 0 < (1� q)� < 1�(s) qsx(s)�(s) �q 32 � q 12 x(s)�n(s) �q�n+12 xn(s) + �q n2 +32 + q� 34n[n2 ℄q�n [n℄qq� (n�2)2Bn 1�nd2n (f1 � qg�; q)n+1 [n℄q!q n4 (n�7)+12 �n = eq [(1� q)qn+1�℄eq [(1� q)�℄ [n℄q !q n4 (n�7)+ 12 �n�n(s) �s+nq n2 (n+2s+1)eq [(1� q)�℄�q(s+ 1)an (�1)n�n q� 3n4 (n�1)+n23. A di�erene-reurrene relationPn(s)q = Ln4Pn+1(s)q4x(s) +Mn4Pn(s)q4x(s) +Nn4Pn�1(s)q4x(s) ; (3.34)where ~Sn, Sn, ~Tn, Tn, ~Rn, Rn, Ln, Mn and Nn are known onstants [5℄.The q�Charlier polynomials on the exponential lattie.The q-analogue of the Charlier polynomials in the exponential lattie x(s) = qs�1q�1 de�ned by(�)n (s; q) = q n4 (n+5) 2'0� q�n; q�s� ; q ; � qs(q � 1)�� == q n4 (n+5) nXk=0 (q�n; q)k(q; q)k �k (s)[k℄q ; 1 < q < 1; 0 < � < 1 (3.35)Obviously, the q-Charlier polynomials (�)n (s; q) are polynomials of degree n on any exponentiallattie x(s) = 1qs + 3. We have hosen 1 = �3 = 1=(q � 1) in order to have limq!1 x(s) = s,i.e., the linear lattie [5℄. Their main data an be found in [5℄.3.1 The q�analog of the Pohhammer symbols.Let us de�ne the quantities (s)q by (s)q = qs � 1q � 1 = q s2�1[s℄q ; (3.36)



R. �Alvarez-Nodarse 11Table 1: Main data for the q-Charlier polynomials in the lattie x(s) = qs�1q�1 (ont).Pn(s)q (�)n (s)q ; x(s) = qs�1q�1�n ��q 32n� 12�n �q2n+1 + [n℄q f1� �(1 � q)qng q n2�1n �qn[n℄qf1� �(1� q)qng~Sn �q 12 (n+1)(1 � qn)~Tn [n℄qq n2 f1� �(1 � q)qng � �qn+2(1 � qn)~Rn �qn+1[n℄q f1� �(1 � q)qngSn 0Tn [n℄qq�n2 �1� q� 12 � �qn(1� q)�Rn �q [n℄q f1� �(1 � q)qngLn � �qn� 12[n+ 1℄qMn �q n2 (qn+1 � 1)[n+ 1℄qNn 0and let [(s)q℄n, the q-Pohhammer symbol, be de�ned by[(s)q℄n = (s)q(s+ 1)q � � � (s+ n� 1)q = n�1Yk=0 qs+k � 1q � 1 : (3.37)Notie that [(s)q℄n is a polynomial of degree exatly equal n in qs. The polynomials [(s)q℄n satisfythe following di�erene equation(s)q[(s+ 1)q℄n � (s+ n)q[(s)q℄n = 0 ; (3.38)and a reurrene relation (s)q[(s)q℄n � q�n[(s)q℄n+1 + q�n(n)q[(s)q℄n = 0: (3.39)Notie also that [(s)q℄n = (qs; q)n(1� q)n ; where (a; q)n = n�1Yk=0(1� a qk): (3.40)The polynomials (qs; q)n satisfy the following di�erene equation on the exponential lattie x(s) =1qs + 3 4(qs; q)n4x(s) = �q n�12 [n℄q�11 (qs+n; q)n�1: (3.41)Notie that [(s)q℄n is a polynomial of degree exatly equal n in qs, and that limq!0[(s)q℄n = (s)n isthe lassial Pohhammer symbol (s)n = (s)(s+ 1) � � � (s+ n� 1).



12 Linearization and onnetion problems for disrete hypergeometri polynomialsLet us de�ne the q-Stirling polynomials or q-falling fatorials (s)[n℄q , by(s)[n℄q = (s)q(s� 1)q � � � (s� n+ 1)q = n�1Yk=0 qs�k � 1q � 1 (3.42)Also we will use the notation(s)[n℄q = (qs; q)[n℄(1� q)n ; (a; q)[n℄ = (1� a)(1� aq�1) � � � (1� aq�n+1): (3.43)These quantities (sq)[n℄ are losely related to the q-Stirling numbers ~Sq(n; k); s�q(n; k) by formulas(s)nq = nXk=0 ~Sq(n; k)(sq)[n℄; (s)[n℄q = nXk=0 s�q(n; k)(s)kq ; (3.44)and satisfy the following di�erene equation(s)q(s� 1)[n℄q � (s� n)q(s)[n℄q = 0 ; (3.45)as well as the reurrene relation(s)q(s)[n℄q � qn(s)[n+1℄q � (n)q[(s)q℄[n℄ = 0: (3.46)Notie that (a; q)[n℄ satis�es the di�erene equation on the exponential lattie x(s) = 1qs + 34(qs; q)[n℄4x(s) = �q�n�12 [n℄q�11 (qs; q)[n�1℄: (3.47)3.2 The disrete ase.The most general polynomial solution of the hypergemetri di�erene equation (3.4) orrespondsto the ase �(x) = A(x� x1)(x� x2); �(x) + �(x) = A(x� �x1)(x� �x2):Without loss of generality we will onsider the ase A = �1 and x1 = 0. In this ase, the monipolynomial solutions an be written as follows [4, 53℄Pn(x) = (��x1)n(��x2)n(x2 � �x1 � �x2 + n� 1)n 3F2� �n;�x ; x2 � �x1 � �x2 + n� 1��x1; ��x2 ����1�; (3.48)where the generalized hypergeometri funtion pFq is de�ned bypFq� a1; a2; :::; apb1; b2; :::; bq ����x� = 1Xk=0 (a1)k(a2)k � � � (ap)k(b1)k(b2)k � � � (bq)k xkk! : (3.49)The four referred families of disrete hypergeometri polynomials are the so-alled lassial dis-rete orthogonal polynomials: Hahn h�;�n (x;N), MeixnerM;�n (x), KravhukKpn(x;N) and CharlierC�n(x), polynomials [51, 52℄, whose main data in its moni form are shown in Tables 2-3. They anbe expresed in terms of the hypergeometri funtions by formulas [52, Setion 2.7,p. 49℄:h�;�n (x;N) = (1�N)n(� + 1)n(�+ � + n+ 1)n 3F2� �x; �+ � + n+ 1;�n1�N;� + 1 ����1�; (3.50)M;�n (x) = ()n �n(�� 1)n 2F1� �n;�x ����1� 1��; (3.51)Kpn(x;N) = (�p)nN !(N � n)! 2F1� �n;�x�N ����1p�; (3.52)C�n(x) = (��)n 2F0� �n;�x� ����� 1��: (3.53)These expressions immediately follow from the above representation (3.48) and its di�erentlimits (more details an be found in [52, 53℄).
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Table 2: Main data for moni Hahn and Charlier polynomials.Hahn CharlierPn(x) h�;�n (x;N) C�n(x)(a; b) [0;N � 1℄ [0;1)�(x) x(N + �� x) x�(x) (� + 1)(N � 1)� (�+ � + 2)x �� x�(x) + �(x) (x+ � + 1)(N � 1� x) ��n n(n+ �+ � + 1) n�(x) �(N + �� x)�(� + x+ 1)�(N � x)�(x+ 1) e���x�(x+ 1)�; � � �1 ; n � N � 1 � > 0�n(x) �(N + �� x)�(n+ � + x+ 1)�(N � n� x)�(x+ 1) e���x+n�(x+ 1)Bn (�1)n(�+ � + n+ 1)n (�1)nbn �n2 �2(� + 1)(N � 1) + (n� 1)(� � � + 2N � 2)�+ � + 2n � �n2 (2�+ n� 1)d2n n!�(�+ n+ 1)�(� + n+ 1)�(� + � +N + n+ 1)(� + � + 2n+ 1)(N � n� 1)!�(� + � + n+ 1)(� + � + n+ 1)2n n!�n

Table 3: Main data for moni Meixner and Kravhuk polynomials.Meixner KravhukPn(x) M;�n (x) Kpn(x)(a; b) [0;1) [0;N ℄�(x) x x�(x) (�� 1)x+ � Np� x1� p�(x) + �(x) �x+ � � p1� p (x�N)�n (1 � �)n n1�p�(x) �x�( + x)�()�(x + 1) N !px(1� p)N�x�(N + 1� x)�(x+ 1) > 0; 0 < � < 1 0 < p < 1, n � N�n(x) �x+n�( + x+ n)�()�(x + 1) N !px+n(1 � p)N�n�x�(N + 1� n� x)�(x+ 1)Bn 1(�� 1)n (�1)n(1 � p)nbn n� + n� 12 1 + �� �� ��� 1� �n[Np+ (n� 1)( 12 � p)℄d2n n!()n�n(1 � �)+2n n!N !pn(1� p)n(N � n)!



14 Linearization and onnetion problems for disrete hypergeometri polynomials4 The q-NAVIMA algorithm in the exponential lattie.Here we will present the q-analogue of the NAVIMA algorithm. This algorithm have been obtained�rstly in [8℄ for the lattie x(s) = qs. Here we will extend it to all exponential latties of the formx(s) = 1qs + 3.Let us onsider two families of q-polynomials Pn(x) and Qn(x(s)) belonging to the lass ofdisrete orthogonal polynomials in the exponential lattie x(s) = 1qs + 3. Eah polynomialPn(x(s)) an be represented as a linear ombination of the polynomials Qn(x(s)). In partiularQm(x(s)) = mXn=0Cn(m)Pn(x(s)): (4.1)For the family Pn(x(s)) we will use the notation1. �(s), �(s) and �n for the di�erene equation (3.2)2. �n, �n and n for the TTRR (3.20) oeÆients3. Sn, Rn and Tn for the seond struture relation (3.33)and for the Qn(x(s))1. ��(s), ��(s) and ��n for the di�erene equation (3.2)2. ��n, ��n and �n for the TTRR (3.20) oeÆients3. �Sn, �Rn and �Tn for the seond struture relation (3.33)Sine the polynomials of the family Qm(x(s)) are solutions of the seond order di�erene equation(3.1) the ation of the di�erene operator of seond order L2 : P! P, de�ned byL2[�(x(s))℄ = �(s)4[�(x(s))℄4x(s� 12) �5[�(x(s))℄5x(s) �+ �(s) 44x(s) + �m[�(x(s))℄; �(x(s)) 2 P;on Eq. (4.1) gives usnXm=0Cn(m)"�(s) 44x(s� 12) �5Pn(x(s))5x(s) �+ �(s)4Pn(x(s))4x(s) + �mPn(x(s))# = 0: (4.2)Multiplying by �(s) and using (3.2) for the Pn family, we obtain the relationnXm=0Cn(m)�[�(s)�(s)� �(s)�(s)℄4Pn(x(s))4x(s) + [�m�(s)� ��(s)�n℄Pn(x(s))� = 0: (4.3)In order to eliminate 4Pn(x(s))4x(s) , we multiply (4.3) by �(s) + �(s) 4 x(s � 12) and use the seondstruture relation (3.33) for the Qm(x(s)) family, obtainingnXm=0Cn(m) f[� (s)�(s)� �(s)�(s)℄[SnPn+1(x(s)) +RnPn�1(x(s)) + TnPn(x(s))℄ ++[�(s) + �(s)4 x(s� 12 )℄[�m�(s)� ��(s)�n℄Pn(x(s))	 = 0: (4.4)The last step onsists to expand the remaining terms of type �2(s)Pn(x(s)), ��(s)�(s)Pn(x(s)),�(s)�� (s)Pn(x(s)) and ��(s)�(s)Pn(x(s)) in linear ombination of Pn(x(s)) by using the TTRR (3.20)



R. �Alvarez-Nodarse 15repeatedly for the Pn(x(s)) family.After this proess, (4.4) redues toNXn=0Mn [C0(m); C1(m); :::; Cn(m)℄Pn(x(s)): (4.5)Taking into aount the linear independene of the family Pn(x(s)) we obtain the linear systemMn [C0(m); C1(m); :::; Cn(m)℄ = 0: (4.6)These relations ontain (linearly) several onnetion oeÆients Ci(m) depending essentially on thedegrees of �(s) and ��(s). In the most general situation they are polynomials of seond degree inx(s) = 1qs + 3. In this ase we obtain a relation of the following type the linear system we arelooking for Mn [Cn+4(m); :::; Cn�4(m)℄ = 0; (4.7)whih is valid for m greater or equal than the number of initial onditions needed to start the reur-sion (m � 8). Notie that for (m < 8) the system also gives the solution, but not in a reurrent way.Notie that for the q-Hahn, q-Meixner, q-Charlier and q-Kravhuk polynomials, as it is showin [4, 5℄ and [52℄, table 3.3, page 95, the �(s) is a polynomial of seond degree in x(s) = qs. Thisimplies that for suh polynomials the reurrene relations for the onnetion oeÆient all are ofthe form (4.7).Remark 1: Notie that to obtain the reurrene relation we have multiply two times by �, whih,obviously arti�ially inrease the order of the reurrene (in fat in 4th orders).Remark 2: It is possible to get the minimal order for the reurrene relation if we use also therelation (3.34) for the q�polynomials Pn. This will yield a reurrene of order 4 instead of theabove 8-th order one.Remark 3: Notie that the algorithm remains valid if Qm is any polynomial satisfying a lineardi�erene equation with polynomials oeÆients. This implies that the above algorithm an be usedfor solving also the linearization problem (1.6) for q�orthogonal polynomials in the exponentiallattie.5 A general algorithm for solving the linearization problem in theexponential lattie.In this setion we will present a general algorithm [7℄ to �nd a reurrene relation for the lineariza-tion oeÆients Lmjn in the expansionQm(x(s))Rj(x(s)) = m+jXn=0 LmjnPn(x(s)); x(s) = 1qs + 3; (5.1)where 1, 3 and q are onstants, Qm(x(s)) � Qm(s)q and Rj(x(s)) � Rj(s)q are polynomials whihsatisfy a seond order di�erene equation of the forma(s)Qm(s+ 1)q + b(s)Qm(s)q + (s)Qm(s� 1)q = 0; (5.2)and �(s)Rj(s+ 1)q + �(s)Rj(s)q + (s)Rj(s� 1)q = 0; (5.3)



16 Linearization and onnetion problems for disrete hypergeometri polynomialsrespetively. A speial ase of suh polynomials are the q-polynomials of hypergeometri type[4, 52, 53℄, whih satisfy the di�erene equation (3.2). Obviously, the Eq. (3.2) is of the type (5.2)(y � Qm), witha(s) = �(s) + �(s)4 x(s� 12); (s) = �(s)5x(s) ; b(s) = �4 x(s� 12)� a(s)4x(s) � (s) :In the following, we will use the operators T and I de�ned as followsT : P! PT p(s) = p(s+ 1) ; I : P! PIp(s) = p(s) :Using the above operators, we an rewrite the Eqs. (5.2)-(5.3) in the forma(s+ 1)T 2Qm(s)q + b(s+ 1)T Qm(s)q + (s+ 1)IQm(s)q = 0; (5.4)and �(s+ 1)T 2Rj(s)q + �(s+ 1)T Rj(s)q + (s+ 1)IRj(s)q = 0: (5.5)It is known [7℄, that, if the polynomials Qm(s)q and Rj(s)q satisfy the linear di�erene equations(5.4) and (5.5), respetively, then the produt u(s)q � Qm(s)qRj(s)q, satisfy a four order di�ereneequation of the formL4u(s) � p4(s)T 4u(s)q + p3(s)T 3u(s)q + p2(s)T 2u(s)q + p1(s)T u(s)q + p0(s)Iu(s)q: (5.6)The idea of the proof is the following [7, 23, 24℄.Sine (5.4)-(5.5),a(s+ 1)�(s+ 1)T 2u(s) == [b(s+ 1)T Qm(s)q + (s+ 1)IQm(s)q℄ [�(s+ 1)T Rj(s)q + (s+ 1)IRj(s)q℄ ;whih an be rewritten asL2u(s) � a(s+ 1)�(s+ 1)T 2u(s)� b(s+ 1)�(s+ 1)T u(s)� (s+ 1)(s+ 1)Iu(s) == b(s+ 1)(s + 1) [T Qm(s)qIRj(s)q℄ + (s+ 1)�(s+ 1) [IQm(s)qT Rj(s)q℄ == l1(s) [T Qm(s)qIRj(s)q℄ + l2(s) [IQm(s)qT Rj(s)q℄ :Next, we hange in the last expression s ! s + 1, and substitute in the right-hand side theexpression T 2Qm(s)q and T 2Rj(s)q, using the Eqs. (5.4)-(5.5), respetively. This allows us torewrite the resulting expression in the formM3u(s) = m1(s) [T Qm(s)qIRj(s)q℄ +m2(s) [IQm(s)qT Rj(s)q℄ ;where M3 is a di�erene operator of third order (there is one term proportional to T 3), m1 and m2are known funtions of s. Repeating the same proedure, but now starting from the above equationwe obtain N4u(s) = n1(s) [T Qm(s)qIRj(s)q℄ + n2(s) [IQm(s)qT Rj(s)q℄ :Then ������ L2u(s) l1(s) l2(s)M3u(s) m1(s) m2(s)N4u(s) n1(s) n2(s) ������ = 0 : (5.7)Expanding the determinant from the �rst olumn, the Eq. (5.6) holds.Remark: The above equation (5.7), and its proof, remains true for any lattie funtion x(s) andnot only for the exponential lattie x(s) = 1qs + 3.



R. �Alvarez-Nodarse 175.1 The generalized linearization algorithm.As before, we will suppose that Qm(s)q and Rj(s)q satisfy the equations (5.4) and (5.5), respetively,and that Pn(s)q satisfy a the three-term reurrene relation (3.20) and a struture relation in theexponential lattie x(s) = 1qs + 3 (3.33). Notie that the latest an be written in the equivalentform [7℄ �(s)T Pn(s)q = n+2Xk=n�2Ak(n)Pk(s)q; �(s) = �(s) + �(s)4 x(s� 12); (5.8)To obtain (5.8) from (3.33) we need to use that �(s) + �(s)4 x(s � 12) is a polynomial of degreetwo in x(s) and that 4x(s) is a polynomial of �rst degree in x(s) (whih is not valid in general forany lattie x(s)), as well as the TTRR (3.20).From the above expression (5.8), one easily obtains that�(s)�(s+ 1)T 2Pn(s)q = n+4Xk=n�4 ~Ak(n)Pk(s)q;�(s)�(s+ 1)�(s+ 2)T 3Pn(s)q = n+6Xk=n�6 Âk(n)Pk(s)q;�(s)�(s+ 1)�(s+ 2)�(s+ 3)T 4Pn(s)q = n+8Xk=n�8 �Ak(n)Pk(s)q: (5.9)
To obtain a reurrene relation for the linearization oeÆients we an do we an follow an ideasimilar to the one exposed in the previous setion for the onnetion problem:Sine (5.6), L4Qm(s)q Rj(s)q = 0, then applying L4 to both sides of (5.1), we �nd0 = m+jXn=0 Lmjn�(s)�(s+ 1)�(s+ 2)�(s+ 3)L4Pn(x(s)):Taking into aount that L4 is a four degree operator, and using the struture relation (5.8) as wellas (5.9) we �nd0 = m+jXn=0 Lmjn(p4(s) n+8Xk=n�8 �Ak(n)Pk(s)q + p3(s)�(s+ 3) n+6Xk=n�6 Âk(n)Pk(s)q++p2(s)�(s+ 2)�(s+ 3) n+4Xk=n�4 ~Ak(n)Pk(s)q++p1(s)�(s+ 1)�(s+ 2)�(s+ 3) n+2Xk=n�2Ak(n)Pk(s)q++�(s)�(s+ 1)�(s+ 2)�(s+ 3)p0(s)Pn(s)q);from where, and by taking into aount that �(s + k), k = 0; 1; 2; 3, is a polynomial of degreetwo in x(s) = 1qs + 3, as well as the TTRR (3.20) we obtain that the oeÆients Lmjn satisfy a



18 Linearization and onnetion problems for disrete hypergeometri polynomialsreurrene relation of the form rXk=0 k(i; j; n)Lmj n+k = 0: (5.10)In general, the present algorithm may not give the minimal order reurrene for the linearizationoeÆients. To get the order r minimal it is neessary to use more spei� properties of the familiesof polynomials involved in (5.1).Remark: Notie that the present algorithm also works for the ase when the produtQm(x(s))Rj(x(s))satisfy any kth-linear di�erene equation with polynomial oeÆients (not neessary of order 4 asin (5.7))., so it an be used for solving more general linearization problems involving the produt ofthree or more q�polynomials. Notie also that will be possible to redue the order of the reurrenerelation if we use the relation (3.34) for the q�polynomials.Obviously the following question arises: And what happens if there is not struture relations(3.33)? For example, for the q�polynomials in the general lattie this question is still open. In thenext setion we will desribe an alternative algorithm whih will allow us avoid this problem.5.2 An example.Sine the produt [(s)q℄i[(s)q℄j is a polynomial in qs, it an be represented as a linear ombinationof the single q-Pohhammer symbols [(sq)℄n. In partiular,[(s)q℄i[(s)q℄j = i+jXn=0Lijn(q)[(sq)℄n: (5.11)In order to to obtain the reurrene relation for the linearization oeÆients Lijn in (5.11) weapply the operator (s)2qT � (s+ i)q (s+ j)qI (5.12)to both sides of (5.11). Using formula (3.38) we obtain the following expression0 = i+jXn=0Lijn "�qs � 1q � 1 �2 T [(sq)℄n ��qs+i � 1q � 1 ��qs+j � 1q � 1 � [(sq)℄n# : (5.13)Taking into aount the Eq. (3.38) for the q-Pohhammer symbol, we �nd0 = i+jXn=0Lijn[(sq)℄n ��qs � 1q � 1 ��qs+n � 1q � 1 ���qs+i � 1q � 1 ��qs+j � 1q � 1 �� == i+jXn=0Lijn[(sq)℄n [(s)q(s+ n)q � (s+ i)q(s+ j)q℄ :Using the identity (s+ n)q = qn(s)q + (n)q;the last expression transforms0 = i+jXn=0Lijn[(sq)℄n �(s)2q [qn � qi+j℄ + (s)q[(n)q � qi(j)q � qj(i)q℄� (i)q(j)q	 ;



R. �Alvarez-Nodarse 19from where, using Eq. (3.39), we arrive to the expressioni+jXn=0Lijnnq�2n�1[qn � qi+j℄[(sq)℄n+2++ ��(n)q � qi(j)q � qj(i)q� q�n � (qn � qi+j) �q�2n�1(n+ 1)q + q�2n(n)q�� [(sq)℄n+1++ �(qn � qi+j)q�2n(n)2q � �(n)q � qi(j)q � qj(i)q� q�n � (i)q(j)q� [(sq)℄no == i+jXn=0Lijnnq�2n�1[qn � qi+j℄[(sq)℄n+2���q�n�1(n+ 1)q + qi+j�1�2n �1 + qn+j+1(j)q + qn+i+1(i)q � 2(n+ 1)q�	 [(sq)℄n+1��qi+j�2n �(n)q � qn+j(j)q� �(n)q � qn+i(i)q� [(sq)℄no = 0 :Then, the following three-term reurrene relation for the linearization oeÆients Lijn holdsAnLijn�2 +BnLijn�1 + CnLijn = 0; (5.14)where An = q�2n+3[qn�2 � qi+j℄;Bn = �q�n(n)q � qi+j+1�n �q�j(j)q + q�i(i)q � q�n(n)q � q�n+1(n� 1)q� ;Cn = �qi+j �q�n(n)q � q�j(j)q� �q�n(n)q � q�i(i)q� ; (5.15)with the initial onditions Lij i+j+1 = 0 and Lij i+j = q�ij.To solve the above reurrene we apply the algorithm qHyper [1, 2, 56℄ whih allows us to �ndan equivalent two-term reurrene relation for the linearization oeÆients. Namely,Lijn+1 = � q�k�1(i+ j � n)q(i� n� 1)q(j � n� 1)qLijn; (5.16)so that, Lijn = (�1)i+j�nq i(i+1)+j(j+1)�n(n+1)2 [(�j)q℄i+j�n[(�i)q℄i+j�n(i+ j � n)q! ; (5.17)for n � max(i; j) and vanishes otherwise.Notie that, in the limit q ! 1, the above reurrene relations (5.14)-(5.16) transform into atwo-term reurrene relations for the standard Pohhammer symbols (s)n of the form(k � i� j � 1)Lijn�1 � (k2 � (i+ j)k + ij)Lijn = 0; Lij i+j+1 = 0; Lij i+j = 1;whih solution Lijn = 8>><>>: (�1)i+j+n(�j)i+j�n(�i)i+j�n(i+ j � n)! n � max(i; j)0 otherwise ;orresponds to (5.17) in the limit q ! 1.The same an be done in the ase of q�Stirling polynomials [7℄.



20 Linearization and onnetion problems for disrete hypergeometri polynomials6 An alternative algorithm for the onnetion and linearizationproblem.In the this setion we will desribe the q-analogue [6℄ of the method presented in [9, 11, 12, 63℄for �nding expliit expression of the oeÆients mn and ljmn of (1.5) and (1.6) in terms of theoeÆients of the seond order di�erene equation of hypergeometri-type in the general non-uniform lattie x(s) = 1qs + 2q�s + 3. The resulting expansion oeÆients will be given ina ompat, analyti, losed and formally simple form in terms of the polynomial oeÆients ofthe orresponding seond-order di�erene equation(s). Notie that the above lattie ontains, asa partiular ase, the exponential lattie x(s) = 1qs + 3 onsidered in the previous Setions[7, 8, 46℄. The advantage of the present approah is that it only requires the knowledge of theseond order di�erene equation satis�ed by the involved hypergeometri q-polynomials as well astheir hypergeometriity, i.e., the Rodrigues-type formula, and it do not require neither informationabout any kind of reurrene relation of the involved disrete hypergeometri q-polynomials nor tosolve any \high" order reurrene relation for the onnetion oeÆients themselves.6.1 Main theorems.Here we �nd the expliit expression of the oeÆients mn in the expansion of an arbitrary q-polynomial Qm(x(s)) � Qm(s)q on x(s) in series of the orthogonal disrete hypergeometri set ofq-polynomials fPng in the same non-uniform lattie x(s), i.e.Qm(s)q = mXn=0 mnPn(s)q : (6.1)Theorem 6.1 [6℄ The expliit expression of the oeÆients mn in the expansion (6.1) ismn = (�1)nBnd2n b�n�1Xs=a 4(n) [Qm(s)q℄ �n(s)4 xn(s� 12 )= (�1)nBnd2n b�1Xs=a 55x(s� n�12 ) � � � 55x(s) [Qm(s)q℄�n(s� n)4 x(s� n+12 ): (6.2)Proof: Multiply both sides of Eq. (6.1) by Pk(s)q�(x)4 x(s� 12), and summing between a andb� 1, the orthogonality relation (3.17) immediately givesmn = 1d2n b�1Xs=aQm(s)qPn(s)q�(s)4 x(s� 12 ) : (6.3)Using the Rodrigues formula (3.7) for Pn(s)q we �ndmn = Bnd2n b�1Xs=aQm(s)q 5(n) [�n(s)℄4 x(s� 12) = Bnd2n b�1Xs=aQm(s)q 5 h5(n)1 [�n(s)℄i : (6.4)Then, by using the formula of summation by partsb�1Xxi=a f(xi)5 g(xi) = f(xi)g(xi)���b�1a�1 � b�1Xxi=a g(xi � 1)5 f(xi);we have mn = Bnd2n Qm(s)q 5(n)1 [�n(s)℄�����b�1a�1 � Bnd2n b�1Xs=a5Qm(s)q 5(n)1 [�n(t)℄�����t=s�1 : (6.5)



R. �Alvarez-Nodarse 21Notie that the �rst term is proportional to �1(s) = �(s+1)�(s+1), so, sine the ondition (3.18),it vanishes. Now, making the hange s! s� 1 in the seond term, we �ndmn = �Bnd2n b�2Xs=a�14Qm(s)q 5(n)1 [�n(s)℄ :But 5(n)1 [�n(s)℄ = 55x2(s) 5(n)2 [�n(s)℄; 5x2(s) = 5x(s+ 1) = 4x(s);then, the last equation transformsmn = �Bnd2n b�2Xs=a�1 44x(s) [Qm(s)q℄5 h5(n)2 [�n(s)℄i :Repeating this proess n times, and using 5(n)n [�n(s)℄ = �n(s) as well as that �n(a � k) = 0 fork = 1; 2; :::; n (see Eq. (3.8)), we obtain the desired expression (6.2) for mn.The seond expression an be obtained analogously [6℄.If we now assume that Qm is an hypergeometri polynomials whih satisfy an equation of theform (3.1) but with oeÆients ~�, ~� , and ~�m, then, by using the Rodrigues-type formula (3.14) forthe polynomials Qm we obtain the following result.Corollary 6.1 The expliit expression of the oeÆients mn in the expansion (6.1) when bothpolynomials are of hypergeometri type ismn = (�1)nBn ~Bm ~Amnd2n m�nXl=0 (�1)l [m� n℄q![l℄q![m� n� l℄q!�b�n�1Xs=a ~�m(s� l)�n(s)~�n(s) 4xm(s� l � 12)4 xn(s� 12)m�nYk=0 4xm(s� k+l+12 ) : (6.6)
A simple onsequene of theorem 6.1 is the following result for the linearization problem:Rj(s)qQm(s)q = m+jXn=0 ljmnPn(s)q ; (6.7)where fPng is a disrete orthogonal set of hypergeometri q-polynomials whih satisfy the di�ereneequation (3.1) and Qm and Rj are arbitrary q-polynomials on the same lattie x(s).Corollary 6.2 The expliit expression of the oeÆients ljmn in the expansion (6.7) isljmn = (�1)nBnd2n b�n�1Xs=a 4(n) [Qm(s)qRj(s)q℄ �n(s)4 xn(s� 12) : (6.8)In the speial ase when Rj is the j�degree q-hypergeometri polynomial satisfying the followingseond order di�erene equation on the non-uniform lattie x(s)e�(s) 44x(s� 12)5y(s)5x(s) + e�(s)4y(s)4x(s) + e�jy(s) = 0; (6.9)the following theorem holds



22 Linearization and onnetion problems for disrete hypergeometri polynomialsTheorem 6.2 The expliit expression of the oeÆients ljmn in the expansion (6.7) is given byljmn = (�1)nBn ~Bjd2n nXk=0 [n℄q![k℄q![n� k℄q! ~Aj k�� b�n�1Xs=a �n(s)4 xn(s� 12)~�k(s+ n� k) [4(n�k)Qm(s)q℄[5(j)k ~�j(s+ n� k)℄ ; (6.10)or, equivalently, ljmn = (�1)nBn ~Bjd2n nXk=0 [n℄q![k℄q![n� k℄q! ~Aj n�k�� b�n�1Xs=a �n(s)4 xn(s� 12)~�n�k(s) [4(k)Qm(s+ n� k)q℄[5(j)n�k ~�j(s)℄ : (6.11)Proof: We will start from Eq. (6.8) and we will use the analog of the Leibnitz formula in thenon-uniform lattie (3.3) [4℄4(n)[f(s)g(s)℄ = nXk=0 [n℄q![k℄q![n� k℄q! 4(k) f(s+ n� k)4(n�k) g(s); (6.12)to 4(n) [Qm(s)qRj(s)q℄. Then, using the Rodrigues-type formula (3.14) for 4(k)Rj(s+ n� k)q4(k)Rj(s+ n� k)q = ~Aj k ~Bj~�k(s+ n� k) 5(j)k [~�j(s+ n� k)℄;the desired result holds. The seond formula an be obtained analogously.A simple orollary of the above theorem is the followingCorollary 6.3 The expliit expression of the oeÆients ljmn in the expansion (6.7) is given byljmn = (�1)nBn ~Bjd2n nXk=0 [n℄q![k℄q![n� k℄q! ~Aj k j�kXl=0(�1)l [j � k℄q![l℄q![j � k � l℄q!� (6.13)� b�n�1Xs=a �n(s)4 xn(s� 12)~�j(s+ n� k � l)~�k(s+ n� k) 4xj(s+ n� k � l � 12)j�kYm=04xj(s+ n� k � m+l+12 ) [4(n�k)Qm(s)q℄ ;Notie that the orollary 6.1 also follows from the above formula if we put m = 0 sine Q0 � 1.6.1.1 The lassial disrete ase.In the espeial ase when x(s) is the linear lattie, i.e, x(s) = s, from Theorem 6.1 and 6.3 wereover the main results in [9℄ for the onnetion and linearization problems, respetivelyTheorem 6.3 Let be x(s) the linear lattie x(s) = s. Then, the expliit expression of the oeÆ-ients mn in the expansion (6.1) ismn = (�1)nBnd2n b�n�1Xs=a 4nQm(s)�(s+ n) nYk=1�(s+ k) == (�1)nBnd2n b�1Xs=a5nQm(s)�(s) n�1Yk=0 �(s� k): (6.14)



R. �Alvarez-Nodarse 23If Qm is also an hypergeometri polynomial, thenmn = (�1)nBn ~Bm ~Amnd2n b�n�1Xs=a m�nXk=0 �n(s)~�n(s) � m� nk � (�1)k ~�m(s� k) == (�1)nBn ~Bm ~Amnd2n b�1Xs=a m�nXk=0 �n(s� n)~�n(s� n) � m� nk � (�1)k ~�m(s� n� k) : (6.15)Corollary 6.4(x)m = mXn=0 amnpn(x); amn = (�1)nm!(m� n)!Bnd2n b�1Xx=a(x)m�n�n(x� n) ; (6.16)x[m℄ = mXn=0 dmnpn(x); dmn = (�1)nm!(m� n)!Bnd2n b�1Xx=a(x� n)[m�n℄�n(x� n) : (6.17)Theorem 6.4 Let be x(s) the linear lattie x(s) = s. Then, the expliit expliit expression of theoeÆients jmn in the expansion (6.7) is given byjmn = (�1)nBn ~Bjd2n k+Xk=k�� nk � ~Ajk�� b�n�1Xs=a j�kXl=0(�1)l � j � kl � �n(s)~�k(s+ n� k) ~�j(s+ n� k � l)[5n�kQm(s+ n� k)℄ == (�1)nBn ~Bjd2n k+Xk=k� � nk � ~Ajk b�1Xs=a j�kXl=0(�1)l� j � kl � �n(s� n)~�k(s� k) ~�j(s� k � l)[5n�kQm(s� k)℄ ;where k� = max(0; n�m) and k+ = min(n; j).For ompleteness, let us point out that there is another equivalent expression for the onnetionoeÆients j0n � jn whih sometimes is very useful. The general polynomial solution of theequation (3.4) is given by (3.48). Then, the solution for the diret onnetion problemqj(x) = jXk=0 ajkx[k℄; (6.18)is given by ajk = (�1)k(��x1)j(��x2)j(x2 � �x1 � �x2 + j � 1)k(�n)k(��x1)k(��x2)k(x2 � �x1 � �x2 + j � 1)jk! : (6.19)This formula inmediately follows from the identity x[k℄ = (�1)k(x)k and the de�nition of thegeneralized hypergeometri funtion (3.49). Let us also remark that sometimes it is better touse the ombination of the above formula with formula (6.17) wo obtain the searhed expansionoeÆients. Notie thatqj(x) = jXk=0 ajkx[k℄ = jXk=0 ajk kXn=0 dknpn(x) = jXn=0 j�nXk=0 aj k+ndk+nn!| {z }j0n pn(x); (6.20)where aj k+n and dk+nn are given by (6.19) and (6.17), respetively. Again here, the oeÆientsj0n � jn depend only on the oeÆients of the seond order di�erene equation of hypergeometritype (3.4).



24 Linearization and onnetion problems for disrete hypergeometri polynomials6.1.2 The lassial ontinuos ase.Finally, we will show how from Theorem 6.1 we an reover (formally) the general results for theontinuous ase [11, 63℄. In order to do this we notie that, formally, if we make the hangex(s) = sh! x, then [52℄,Pn(x(s+ 1))� Pn(x(s))xk(s+ 1)� xk(s) = Pn(sh+ h)� Pn(sh)h = Pn(x+ h)� Pn(x)h :Thus, limh!0 4Pn(x(s))4xk(s) = P 0n(x) and limh!04(k)Pn(s)q = dkPn(x)dxk . Then, by similar limiting proessesEq. (3.1) transforms into the lassial hypergeometri di�erential equation [51, 52℄�(x)P 00n (x) + �(x)P 0n(x) + �nPn(x) = 0:where �(x) = limh!0 ��(x(s)), �(x) = limh!0 ��(x(s)) being x = sh. Furthermore, the Pearson-typeequation (3.6) beomes [�(x)�(x)℄0 = �(x)�(x) and also [52℄ �n(s;h) ! �(x)�n(x). Finally, theRodrigues-type formula (3.7) transforms into4(k)Pn(s)q = AnkBn�k(s) 5(n)k [�n(s)℄! dkPn(x)dxk = AnkBn�k(x) dn�kdxn�k [�(x)�n(x)℄:Now we put x(s) = sh in (6.2)mn(h) = (�1)nBn(h)d2n(h) (b�1)h�nhXxi=ah 4(n) [Qm(xi)q℄ �n(xi=h;h)h == (�1)nBn(h)d2n(h) B�nhXx=A 4(n) [Qm(xi)q℄ �n(xi=h;h)h; xi+1 = xi + h:Let us prove that the above sum transforms in the limit in a integral from whih the main resultin [63, Theorem 3.1, page 163℄ easily follows. More onretely,limh!0 mn(h) = (�1)nBnd2n Z BA dkQm(x)dxk �(x)�n(x) dx;where d2n is the squared norm for the polynomials orthogonal with respet to �(x) [52℄.In order to do that, let us show that the quantityIn(Qm; �n) � �����B�nhXx=A 4(n) [Qm(sh)q℄ �n(xi=h;h)h � Z BA Q(n)m (x)�(x)�n(x) dx�����an be small enough for h suÆiently small.jIn(Qm; �n)j � B�nhXxi=A ���4(n) [Qm(sh)q℄�Q(n)m (xi)��� �n(xi=h;h)h++B�nhXxi=A ���Q(n)m (xi) f�n(xi=h;h) � �n(xi)g���h+ ������B�nhXxi=A Q(n)m (xi)�n(xi)h� Z BA Q(n)m (x)�n(x) dx������ ;where Q(n)m denotes the n-th derivative of Qm and �n(x) = �(x)�n(x). Let onsider �rst the asewhen B is bounded. In this ase the �rst integral an be small enough (less that �=3) for h suÆient



R. �Alvarez-Nodarse 25small providing that �n(xi=h;h) is bounded. In the following we will suppose that the limit funtion�n(x), n � 1 is a ontinuous funtion in [A;B℄. For the seond sum we an do the same sine Qmis a polynomial and then it is bounded in any losed interval. Finally we will onsider the last sumwhih an be rewritten in the form������ BXxi=AQ(n)m (xi)�n(xi)h� Z BA Q(n)m (x)�n(x) dx������ + ������ BXxi=B�hnQ(n)m (xi)�n(xi)h������ :Notie that the �rst sum an be less �=6 sine it is a Riemann sum orresponding to the inte-gral R BA Q(n)m (x)�n(x) dx, and the last sum obviously tends to zero so, for suÆiently small h, itis less than �=6. So, for any given � > 0, one an hose a suÆiently small h so that jIn(Qm; �n)j � �.Finally, to prove the result for the unbounded B we use the fat that, in this ase, the funtions�n(xi=h;h) as well as �n(xi) tend to zero faster than any polynomial tends to in�nity when xi !1(see the boundary onditions (3.18) for the polynomials on the lattie x(s) as well as for theontinuous ase [52, Eq. (1.3.1) page 7℄. Then,jIn(Qm; �n)j �1Xxi=A ���4(n) [Qm(sh)q℄�Q(n)m (xi)��� �n(xi=h;h)h + 1Xxi=A ���Q(n)m (xi) f�n(xi=h;h) � �n(xi)g��� h++ ������ 1Xxi=AQ(n)m (xi)�n(xi)h� Z 1A Q(n)m (x)�n(x) dx������ � �3 + �3 + �3 = �:To onlude this Setion let us point out that here we have taken the limit formally and haveproved that our main result, i.e., formula (6.2), transforms into the orresponding one for theontinuous ase [63℄, but solving onrete examples one must to be very areful sine, for instane,in the limit Hahn ! Jaobi, the parameter h = 1=N where N is the total number of points in thelattie and the Hahn polynomials expliitly depend on it. More information on how to take limitsfor onrete families an be found in [32, 39, 52, 53℄.7 Examples.7.1 q�polynomials.7.1.1 Connetion between (qs; q)[m℄ and �n(x; q).Now will apply theorem 6.1 for �nding the onnetion oeÆients qmn in the expansion(qs; q)[m℄ = mXn=0 dqmn�n(s; q); (7.21)where (a; q)[k℄ is de�ned in (3.42), and �n(s; q) is, as before, the q-Charlier polynomials on thelattie x(s) = qs�1q�1 (3.35). In this ase, sine (3.47)4(n) h(qs; q)[m℄i = q�n4 (n�1) � 44x(s)�n (qs; q)[m℄ = (1� q)n[m℄q!q�n2 (m�1)[m� n℄q! (qs; q)[m�n℄= q n4 (n�1)�n(m�1) (1� q)n�q[m+ 1℄�q[m� n+ 1℄ (qs+n; q)m�n:



26 Linearization and onnetion problems for disrete hypergeometri polynomialsIn this ase, using formula (6.2), the expression (qs;q)[m�n℄(q;q)s = 1(q;q)s�m+n , as well as1Xs=0 (qs; q)[m�n℄zs(q; q)s = 1Xs=m�n (qs; q)[m�n℄zs(q; q)s = zm�n 1Xs=0 zs(q; q)s = zm�neq(z);we obtain dqmn = qm+n4 (n�7)� mn �q (1� q)m(�1)n�m: (7.22)The above formula is the q-analogue of the so-alled inversion formula for hypergeometri polyno-mials (ompare with the expliit expression of the q-Charlier polynomials (3.35).Remark. If we rewrite (7.21) in the form(s)[m℄q = mXn=0 ~dqmn�n(s; q); ~dqmn = qm+n4 (n�7)� mn �q (�1)n�m; (7.23)taking into aount that limq!1 (qs; q)[m℄(1� q)m = (s)[m℄;we obtain in the limit q ! 1(s)[m℄ = mXn=0 dmn�n(s); dmn = � mn � (�1)n(�)m:Using again the fat that for the polynomials �n(s), the leading oeÆients are given by an =(��)�n, the above result oinides with well know lassial result (see e. g. [9℄)7.1.2 Connetion between (qs; q)m and �n(x; q).First of all we will apply theorem 6.1 for �nding the onnetion oeÆients qmn in the expansion(qs; q)m = mXn=0 qmn�n(s; q); (7.24)where (a; q)k is de�ned in (3.26), and �n(s; q) is the afore mentioned q-Charlier polynomials.Sine we are working in the lattie x(s) = qs�1q�1 , we have4(n) [(qs; q)m℄ = q�n4 (n�1) � 44x(s)�n (qs; q)m = (1� q)n[m℄q!q n2 (m�1)[m� n℄q! (qs+n; q)m�n= q n4 (n�1) (1� q)n�q[m+ 1℄�q[m� n+ 1℄ (qs+n; q)m�n:Then (6.2) givesqmn = q n4 (5n�7)(q � 1)n�neq[(1� q)�qn+1℄ � mn �q 1Xs=0 (qs+n; q)m�n [(1� q)�qn+1℄s(q; q)s ;where the q-binomial oeÆients are de�ned by� mn �q = (q; q)m(q; q)n(q; q)m�n :



R. �Alvarez-Nodarse 27In order to take the sum in the above expression we will use the identity [32, Eq. (1.2.34) page 6℄(a qs; q)k = (a; q)k(a qk; q)s(a; q)s ; (7.25)as well as the expression [32, Eq. (1.5.2) page 11℄(qm; q)s(qn; q)s = sXk=0 (q�s; q)k(qn�m; q)k(qn; q)k qm+s(q; q)k : (7.26)Then, denoting by z = (1� q)�qn+1, we have1Xs=0 (qs+n; q)m�n zs(q; q)s = 1Xs=0 (qn; q)m�n(qm; q)s(qn; q)s(q; q)s zs == (qn; q)m�n 1Xk=0 (qn�m; q)kqmk(qn; q)k(q; q)k 1Xs=0 (q�s; q)kqsk(q; q)s zs == (qn; q)m�n 1Xk=0 (qn�m; q)kqmkzk(qn; q)k(q; q)k �(�1)kq k2 (k�1)� 1Xs=k zs�k(q; q)s�k == (qn; q)m�neq[(1� q)�qn+1℄1'1� qn�mqn ; q; �qn+m+1(1� q)� :For the third equality we have used the identity [32, Eq. (1.2.32) page 6℄(q�s; q)k(q; q)s = (�1)kq k2 (k�1)�ks(q; q)s�k : (7.27)Then, for the oeÆients qmn we �nally obtainqmn = (qn; q)m�n�n(q � 1)nq n4 (5n�7) � mn �q 1'1� qn�mqn ; q; �qn+m+1(1� q)� : (7.28)Remark. Notie that, sine (qs; q)m(1� q)m = mXn=0 qmn(1� q)m �n(x; q);and taking into aount thatlimq!1 (qs; q)m(1� q)m = (s)m; limq!1 �n(x; q) = �n(s);we obtain taking the limit q ! 1(s)m = mXn=0 mn�n(s); mn = � mn � (m� 1)!(n� 1)! (��)n 1F1� n�mn ���� ��;where �n(s) denotes the lassial (non moni) Charlier polynomials [52, 53℄. Sine for these poly-nomials the leading oeÆients are given by an = (��)�n, the above result oinides with thelassial result given in [9℄.



28 Linearization and onnetion problems for disrete hypergeometri polynomials7.1.3 The q�Charlier polynomials in the exponential lattie.We will solve now the onnetion problemm(s; q) = mXn=0 qmn�n(s; q): (7.29)Then, by using the expression (6.6) of the orollary (6.1) where Qm(s)q = m(s; q) and Pn(s)q =�n(s; q), respetively, we obtainqmn = ���n � mn �q q 14 (m�n)(m�n+5)eq [(1� q)qn+1�℄ m�nXl=0 (�1)lq l2 (l�2m�1)(1� q)l l � m� nl �q 1Xs=l [(1� q)�qn+1℄s�l(q; q)s�l == ���n� mn �q q 14 (m�n)(m�n+5) m�nXl=0 (�1)l �� qn�m+1�l� m� nl �q q l(l�1)2 ;where we also use the fat that 1Xs=0 zk�q(s� k) = 1Xs=k zk�q(s� k) = 1Xs=k zk (1� q)s�k(q; q)s�k .Now, applying the indentity (7.27) to (q; q)m�n�l (k = l), and using the q-binomial theorem[32, x1.3, Eq. (1.3.14) page 9℄,kXl=0 (q�k; q)l(q; q)l zl = 1'0� q�k� ; q; z� = (zq�k; q)k ;we obtain the following expression for the oeÆient qmnqmn = ���n� mn �q q 14 (m�n)(m�n+5)(qn�m+1 ��1; q)m�n: (7.30)Remark. A simple alulation shows that the equation (7.29) transforms in the limit q ! 1 intom(s) = mXn=0� mn ����n�1� ��m�n �n(s);for the (non moni) Charlier polynomials and this oinides with the lassial results for monipolynomials (see e.g. [9℄) sine the leading oeÆients for the Charlier polynomials �n(s) is equalto (��)�n.7.1.4 Examples of linearizations.Let us show here how we an onbine the results of the previous setion to solve some linearizationproblems. We start �nding the oeÆient ~Lijn in the expansion(s)[i℄q (s)[j℄q = i+jXn=0 ~Lijn(q)(sq)[n℄; (7.31)and use the identity (s)[n℄q = (�1)nq�n[(�s)q�1 ℄n, then, from (5.11) and (5.17) we �nd~Lijn(q) = (�1)i+j�nqn�i�jLijn(q�1) ; (7.32)thus ~Lijn = qi+j+ij�n [(�j)q℄i+j�n[(�i)q℄i+j�n(i+ j � n)q! ; for n � max(i; j); (7.33)



R. �Alvarez-Nodarse 29and vanishes otherwise. Notie that in the limit q ! 1~Lijn = 8>><>>: (�j)i+j�n(�i)i+j�n(i+ j � n)! n � max(i; j)0 otherwise ; (7.34)The above problem an be used to solve the linearization problem(s)[m℄q (s)[j℄q = m+jXn=0 qm;j;n�n(s; q); (7.35)sine qm;j;n = m+j�nXk=0 ~Lmj k+n(q)qk+n n;where ~Lmj k+n(q) are given in (7.33) and qk+n n by (7.23). Doing, some straightforward alulations(in whih we use some identities involving the (a; q)n and (a; q)[n℄ symbols [32, 39℄) lead us to theexpressionqm;j;n = qm+j+mj�n2 (n+1)�m+j�n(q � 1)n � j +mn �q 3b'1� q�m; q�j qn�m�jq�m�j ; q; 1(1� q)qn+1�� :Here, we use the funtion rb'p de�ned byr b'p� a1; a2; :::; arb1; b2; :::; bp ; q ; z� = 1Xk=0 (a1; q)k � � � (ar; q)k(b1; q)k � � � (bp; q)k zk(q; q)k : (7.36)7.2 Examples for disrete lassial polynomials.Inversion problems of lassial polynomials.Here we will give the expliit losed expressions for the oeÆients of the inversion formulaswhih follows from Theorem (6.3) of the lassial disrete polynomials assoiated to the polynomials(x)m and x[m℄, respetively. From then, the orresponding inversion formulas assoiated to thepolynomials xm follow in a straightforward manner.7.2.1 Charlier Polynomials C�n(x).The use of the inversion formula (6.16) related to (x)m and the main data of the moni Charlierpolynomials (see Table 2), as well as formula (7.43), allows us to �nd the orresponding expansionoeÆients
amn =

8>>>>>>>>>>>><>>>>>>>>>>>>:
1 m = n = 0�m! 1F1 1�m2 ������ �! m 6= 0; n = 0� mn � �(m)�(n) 1F1 n�mn ������ �! m 6= 0; n 6= 0 :

For the expansion of x[m℄, we use Eq. (6.17) and Eq.1F1 aa �����x! = ex; 8a 2 R: (7.37)



30 Linearization and onnetion problems for disrete hypergeometri polynomialsto obtain that dmn = � mn ��m�n:7.2.2 Meixner polynomials M;�n (x).Analogously, for the moni Meixner polynomials we �nd
amn =

8>>>>>>>>>>>><>>>>>>>>>>>>:
1 m = n = 0�m!1� �2F1 1�m ; 1 + 2 ����� ��� 1! m 6= 0; n = 0� mn � �(m)�(n) 2F1 n�m ; n+ n ����� ��� 1! m 6= 0; n 6= 0 ;

and dmn = � mn � ( + n)m�n� �1� ��m�n :7.2.3 Kravhuk polynomials Kpn(x;N).For the moni Kravhuk polynomials, we obtain
amn =

8>>>>>>>>>>>><>>>>>>>>>>>>:
1 m = n = 0Npm! 2F1 1�m ; 1�N2 �����p! m 6= 0; n = 0� mn � �(m)�(n) 2F1 n�m ; n�Nn �����p! m 6= 0; n 6= 0 ;

and dmn = � mn � pm�n(N �m+ 1)m�n:7.2.4 Hahn polynomials h�;�n (x;N).Finally, for the moni Hahn polynomials, one has
amn = 8>>>>>>>>>><>>>>>>>>>>:

1 m = n = 0m!(� + 1)(N � 1)�+ � + 2 3F2� m+ 1; 2�N; 2 + �2; 2�N � � ����1� m 6= 0; n = 0� mn � �(m)�(n) 3F2� n�m; 1 + n�N;n+ � + 1n; 2n+ �+ � + 2 ����1� m 6= 0; n 6= 0 ;
and dmn = � mn � (N �m)m�n(n+ � + 1)m�n(2n+ �+ � + 2)m�n :



R. �Alvarez-Nodarse 31Some of the above formulas have been found by di�erent authors using di�erent approahes.This is so for the Stirling inversion problems of the Charlier [24, 40, 62, 68℄, Meixner [40, 62, 68℄,Kravhuk [40, 62, 68℄ and Hahn [30℄ polynomials.Connetion problem between disrete hypergeometri polynomials.In this setion we will provide the formulas onneting the di�erent families of lassial hyperge-ometri disrete polynomials, whih generalize results already obtained by di�erent authors usingdi�erent approahes, e.g. [10, 30, 40, 43, 62℄, in partiular, the most general ase involving twoHahn polynomials is given (see formula (7.51) from below).The �rst eight ases an be omputed by using (6.15) and the other ones with the help of (6.20).Notie that if we equate both expressions (6.17) and (6.20) one an obtain di�erent summationformulas involving terminating hypergeometri series of the type given in the Appendix.7.2.5 Charlier-CharlierFrom formula (6.15) and using the main data of the Charlier polynomials (see Table 2) we �ndfor the onnetion oeÆients between the familiesC�j (x) = jXn=0 jnCn(x);the expression jn = � jn � ( � �)j�n: (7.38)7.2.6 Meixner-MeixnerFor the Meixner-Meixner problem we haveM;�j (x) = jXn=0 jnM�;�n (x);where jn = � jn � (1� �)n+��j�n�(j + )�(�+ n)(�� 1)j�n �� j�nXk=0(�1)k � j � nk �����k �(n+ k + �)�(n+ k + ) 2F1 n+ k + � ; j + n+ k +  ������!:Using the transformation formula [35, p. 425℄2F1 a b �����x! = (1� x)�a2F1 a � b ����� xx� 1! == (1� x)�a�b2F1 � a � b �����x!; (7.39)
the identity � j � nk � = (�1)k (n� j)kk! as well as formula [35, Eq. 65.2.2, p. 426℄1Xk=0 (a)k(b)kk!()k yk2F1 � a � b+ k �����x! = (1� x)a+b�2F1 a b �����x+ y � xy!: (7.40)



32 Linearization and onnetion problems for disrete hypergeometri polynomialswe �nally obtainjn = � jn �� ��� 1�j�n ( + n)j�n 2F1 n� j ; n+ �n+  ������(1� �)�(1� �)!: (7.41)In partiular, for the speial ase � = , Eq. (7.41) beomesjn = � jn � ( + n)j�n� � � �(� � 1)(�� 1)�j�n ;The seond ase orresponds to � = �, then (7.41) beomesjn = � jn �� ��� 1�j�n ( � �)j�n:7.2.7 Kravhuk-Kravhuk.For the Kravhuk-Kravhuk expansion,Kpj (x;N) = jXn=0 jnKqn(x;M); j � minfN;Mg;the same proedure used in the Meixner-Meixner ase gives usjn = � jn � (M � j + 1)j�n(�p)j�n 2F1 n� j ; n�Nn�M �����qp!: (7.42)In the partiular ase p = q its redues tojn = � jn � pj�n(N �M)j�n;and for the ase M = N jn = � jn ��pq�j�n (q � p)j�n(N � j + 1)j�n:7.2.8 Meixner-Charlier.In this ase we have the expansionM;�j (x) = jXn=0 jnC�n (x);with jn = � jn � e���j�n�(j + )(�� 1)j�n j�nXk=0 (�1)k�( + n+ k) � j � nk �����k 1F1 j + m+ k +  ������!:If we use the transformation formula [35, p. 431℄1F1 a �����x! = ex1F1 � a ������ x!: (7.43)and the sumation formula [35, Eq. (66.2.5), p. 431℄1Xk=0 (� a)kk!()k yk1F1 a+ k �����x! = ey1F1 a �����x� y!: (7.44)we �nd jn = � jn �� ��� 1�j�n ( + n)j�n 1F1 n� jn+  ������(1� �)� !: (7.45)



R. �Alvarez-Nodarse 337.2.9 Charlier-Meixner.For the Charlier-Meixner expansionC�j (x) = jXn=0 jnM;�n (x);one �nds from Eq. (6.15) thatjn = � jn � (��)j�n 2F0 n� j ;  + n{ ����� ��(1� �)!: (7.46)7.2.10 Meixner-Kravhuk.In the Meixner-Kravhuk ase,M;�j (x) = jXn=0 jnKpn(x;N); j � Nwe �nd jn = � jn � (n+ )j�n� ��� 1�j�n 2F1 n� j ; n�Nn+  �����p(�� 1)� !: (7.47)7.2.11 Kravhuk-Meixner.For the Kravhuk-Meixner onnetion problem,Kpj (x;N) = jXn=0 jnM�;�n (x); j � Nwe have jn = � jn � (N + 1� j)j�n(�p)j�n 2F1 n� j ; n+ �n�N ����� �(� � 1)p!: (7.48)7.2.12 Kravhuk-Charlier.For the Kravhuk-Charlier onnetion problem,Kpj (x;N) = jXn=0 jnC�n(x); j � N;we have jn = � jn � (N + 1� j)j�n(�p)j�n 1F1 n� jn�N ������ �p!: (7.49)7.2.13 Charlier-Kravhuk.For the Charlier-Kravhuk problem,C�j (x) = jXn=0 jnKpn(x;N); j � N;we have jn = � jn � (��)j�n 2F0 n� j ; n�N{ ������ p�!: (7.50)



34 Linearization and onnetion problems for disrete hypergeometri polynomials7.2.14 Hahn-HahnFor the Hahn-Hahn problem, we use Eq. (6.20). A straightforward study of the problemh;�j (x;M) = jXn=0 jn h�;�n (x;N); j � minfN � 1;M � 1g;allows us to �ndjn = � jn � (1 + n�M)j�n(1 + n+ �)j�n(1 + n+ j +  + �)j�n �� 4F3 n� j ; 1 + n�N ; n+ � + 1 ; 1 + j + n+  + �1 + n�M ; n+ �+ 1 ; 2n+ �+ � + 2 �����1!: (7.51)In the partiular ase N = M (7.51) redues tojn = � jn � (1 + n�N)j�n(1 + n+ �)j�n(1 + n+ j +  + �)j�n 3F2 n� j ; n+ � + 1 ; 1 + j + n+  + �n+ �+ 1 ; 2n+ �+ � + 2 �����1!:7.2.15 Hahn-CharlierFor the Hahn-Charlier problem,h�+�j (x;N) = jXn=0 jnC�n (x); j �M � 1;we �nd thatjn = � jn � (1 + n�N)j�n(1 + n+ �)j�n(1 + n+ j + �+ �)j�n 2F2 n� j ; 1 + j + n+ �+ �1 + n�N n+ � + 1 ������ �!: (7.52)7.2.16 Charlier-HahnFor the Charlier-Hahn problem,C�j (x) = jXn=0 jn h�;�n (x;N); j � N � 1;we �nd that jn = � jn � (��)j�n 3F1 n� j ; 1 + n�N ; n+ � + 12n+ �+ � + 2 ������ 1�!: (7.53)7.2.17 Hahn-MeixnerFor the Hahn-Meixner problem,h�;�j (x;N) = jXn=0 jnM;�n (x); j � N � 1;we �nd that jn = � jn � (1 + n�N)j�n(1 + n+ �)j�n(1 + n+ j +  + �)j�n �� 3F2 n� j ; �+ � + j + n+ 1 ;  + n1 + n�N ; n+ � + 1 ����� ��� 1!: (7.54)



R. �Alvarez-Nodarse 357.2.18 Meixner-HahnIn the Meixner-Hahn ase,M;�j (x) = jXn=0 jn h�;�n (x;N); j � N � 1;we �nd thatjn = � jn � � ��� 1�j�n ( + n)j�n3F2 n� j ; 1 + n�N ; n+ � + 1�+ � + 2n+ 2 ;  + n ������� 1� !: (7.55)7.2.19 Hahn-KravhukFor the Hahn-Kravhuk problem,h�;�j (x;N) = jXn=0 jnKpn(x;M); j � minfM � 1; Ng;we �nd that jn = � jn � (1 + n�N)j�n(1 + n+ �)j�n(1 + n+ j +  + �)j�n �� 3F2 n� j ; �+ � + j + n+ 1 ; n�M1 + n�N ; n+ � + 1 �����p!: (7.56)7.2.20 Kravhuk-HahnIn the Kravhuk-Hahn ase,Kpj (x;M) = jXn=0 jn h�;�n (x;N); j � minfN � 1;Mg;we �nd that jn = � jn � pj�n(n�M)j�n3F2 n� j ; 1 + n�N ; n+ � + 1�+ � + 2n+ 2 ; n�M �����1p!: (7.57)7.2.21 Some linearization formulas.Here we apply Theorem 6.3 when rm is the produt of two Stirling polynomials. More onretely,we will solve the linearization of a produt of two Stirling polynomials x[m℄x[j℄ in terms of theCharlier polynomials x[m℄x[j℄ = m+jXn=0 m;j;nC�n(x); (7.58)In fat, the aforesaid theorem givesm;j;n = � mp� j �� pn � j!(p�m)! �p�n�3F3 p�m� j; p+ 1; 1p� j + 1; p�m+ 1; p� n+ 1 ������ �!; (7.59)



36 Linearization and onnetion problems for disrete hypergeometri polynomialswhere p = max(n;m; j).Next, we apply Th. 6.4 to �nd the solution of the following linearization problemx[m℄Cj (x) = m+jXn=0 m;j;nC�n(x); (7.60)obtainingm;j;n = jXk=max(0;n�m)� jk �� mp� k �� pn � k! (�)j�k�p�n(p�m)! �3F3 p�m� k; p+ 1; 1p� k + 1; p�m+ 1; p� n+ 1 ������ �!; p = max(n;m; k) : (7.61)This result an be alternatively found by means of Eqs. (7.58) and (7.59) together with Eqs. (3.53)and the de�nition x[n℄ = x(x � 1) � � � (x � n + 1) � (�1)n(�x)n. Notie the �niteness of the k-summation and the terminating harater of the involved hypergeometri funtion 3F3.Expressions similar to Eq. (7.60) referred to the rest of lassial disrete hypergeometri poly-nomials with the non-orthogonal polynomials x[m℄ and (x)m may be equally found.ConlusionsTo onlude this work let us said that all the results here are valid for lassial disrete polynomialssine they are polynomials of hypergeometri type in the linear lattie x(s). In suh away, we anreover the results given in [9, 24, 33℄.Referenes[1℄ S. A. Abramov, P. Paule, and M. Petkov�sek, q-Hypergeometri Solutions of q-Di�erene Equations.Disrete Mathematis. 180 (1998), 3-22[2℄ S. A. Abramov and M. Petkov�sek, Finding All q-Hypergeometri Solutions of q-Di�erene Equations.Pro. FPSAC '95, Universite de Marne-la-Valle. Noisy-le-Grand,B. Leler, J.-Y. Thibon, eds. 1995,1-10.[3℄ M. Abramowitz and I. A. Stegun, Handbook of Mathematial Funtions. Dover Publ., New York, 1964.[4℄ R. �Alvarez-Nodarse, Polinomios hipergeom�etrios y q-polinomios. Monograf��as de la Aademia de Cien-ias de Zaragoza, Spain, (1999) (to appear).[5℄ R. �Alvarez-Nodarse and J. Arves�u, On the q-polynomials in the exponential lattie x(s) = 1qs + 3.Integral Transform. Speial Funt. 8 (1999) 1-21.[6℄ R. �Alvarez-Nodarse, J. Arves�u and R. J. Y�a~nez, Linearization formulas between orthogonal q-polynomials. Preprint (1999).[7℄ R. �Alvarez-Nodarse, N. R. Quintero and A. Ronveaux, On the linearization problems involvingPohhammer symbols and their q�analogues. J. Comput. Appl. Math.107 (1999) 133-146.[8℄ R. �Alvarez-Nodarse and A. Ronveaux, Reurrene relation for onnetion oeÆients between q-orthogonal polynomials of disrete variables in the non-uniform lattie x(s) = q2s. J. Phys. A: Math.and Gen. 29 (1996), 7165-7175.[9℄ R. �Alvarez-Nodarse, R.J. Y�a~nez and J.S. Dehesa, Modi�ed Clebsh-Gordan-type expansions for prod-uts of disrete hypergeometri polynomials. J. Comput. Appl. Math. 89 (1998) 171-197.
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