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Abstract

It is well known the importance of discrete polynomials not only for their mathematical
nature but by their several applications in several branches of the actual sciences. The main aim
of the present talk is to present a “relative simple” algorithm for solving the linearization problem
involving certain families of discrete ¢-polynomials (this kind of problems can appear in some
specific physical systems). Concrete examples of non-orthogonal families of Pochhammer and
their g-analogues, as well as more complicated examples will be presented. Finally, comparison
with other alternative approaches will be given.

1 Introduction

The expansion of any arbitrary discrete polynomial g, (z) in series of a general (albeit fixed) set
of discrete hypergeometric polynomial {p,(z)} is a matter of great interest, solved only for some
particular classical cases (for a review see [13, 18, 31] up to the middle of seventies and [9, 59, 62],
since then up to now). This is particularly true for the deeper problem of linearization of a product
of any two discrete polynomials. Usually, the determination of the expansion coefficients in these
particular cases required a deep knowledge of special functions and, at times, ingenious induc-
tion arguments based in the three-term recurrence relation of the involved orthogonal polynomials
[13, 14, 15, 16, 17, 20, 25, 27, 29, 30, 31, 38, 41, 42, 50, 54, 64, 65, 67]. Only recently, general and
widely applicable strategies begin to appear [9, 10, 11, 12, 24, 33, 37, 40, 43, 45, 44, 47, 48, 49, 59,
61, 62, 63, 68].

One of the reasons for this increasing interest is the applications of such kind of problems in
several branches of the Mathematics and Physics. For example, Gasper in his paper [31], write

The solution to many problems can be shown to depend on the determination of when a
specific function is positive or nonnegative. ...

Sometime the problem can be reduced to a simpler one involving fewer parameters or it can be

transformed into another problem that is easier to handle. For example, consider a two variable
problem which consisting of proving

S anpa(@)paly) 2 0, (L1)

where pn(x) is a sequence of functions and x and y satisfy appropriate restrictions. If there is
an integral representation of the form

mwm@:/m@ww@, djia () > 0,
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then the problem (1.1) can (at least formally) be reduced to the one variable problem

Z afnpn(w) >0,

. it may be possible to simplify the problems of the type

[ pa@pn(e)aots) >0
by using formulas of the forms

Pn(2)pm(z) = Z a(k, m,n)Py(z), a(k,m,n) >0, (1.2)
k

pi(z) = Zb(j,mqj(w), b(j, k) > 0, (1.3)

Nine years after, one of the most famous conjecture: The Bieberbach conjecture (|a,| < n) for
analytic and univalent functions of the form f(z) = z+ Y .,2,a,2" in |z| < 1, has been solved by
Louis de Branges using an inequality proved by Askey and Gasper in 1976 [19] (see [21] for more
details)

n
a0, (a+2), —n,n+a+ 2,22

t)ZQ 0<t<l, a>-=2 (1.4)

where (a)y, is the Pochhammer symbol and P*?(z) denotes the Jacobi polynomials

1—2z
5 .

Expansions of type (1.3) are usually called as connection or projection formulas while those
of type (1.2) are referred to linearization formulas and the corresponding coefficients b(j, k) and
a(k,m,n) are known as connection and linearization coefficients [13, 18]. Notice that, since the
involved hypergeometric series in (1.4) is terminating, i.e., has a finite number of terms, the above
problem can be considered as a connection problem between two families of polynomials where all
the connection coefficients are positive (and equal to 1 in this example). So the Gasper’s words
about the importance in applications of the connection and linearization problems, and the posi-
tivity of the corresponding coefficients, become very actual and of interest.

Pyi(a) =

(a+nnF —nn+a+p+1
- 5, 2b1
n! a+1

Here in this work we will use a different notation for the connection ¢, and linearization c;jp,
coefficients, i. e., the coefficients on the expansions [18]

m

qm(I) = Zcmnpn(x)a (15)

n=0
m—+j

Qm($)rj($) = Z ijnpn(x)a (1-6)
n=0

respectively, where g, (z) and 7;(z) are any mth-degree and jth-degree polynomials, and {p,} de-
notes an arbitrary set of polynomials.

The first who considered the linearization problem for discrete polynomials (notice that in the
de Branges’s proof the “continuous” Jacobi polynomials have been used) was Eagleson in 1969
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for Kravchuk polynomials [27]. Later on, Gasper [31] study the connection problem for the Hahn
h®8(z, N) polynomials

Wl (2, M) chn (z,N),  j<min{N —1,M —1},

and completely solved it (the particular case N = M, of interest because ¢;, > 0, he solved one
year earlier in [30]), from where, by limiting process it is possible to obtain the connection coeffi-
cients for Jacobi polynomials as well as for other continuous and discrete families (see [30, 31] for
further information on this). Some years later, Askey and Gasper [20] considered the linearization
problem when the involved polynomials were the discrete polynomials of Hahn, Meixner Kravchuk
and Charlier (for a review on discrete polynomials see [51, 52]) but only in the special case when
all 7, ¢; and p, belong to the same family with the same parameters (in [31] some preliminary
results regarding to the positivity of such coefficients were discussed).

In all these cases, continuous and discrete, the proofs were based on very specific characteristic
of the involved families, particularly their hypergeometric representation and generating functions
have been exploited for finding the corresponding solution.

It is important to remark that, even in the case when it is possible to compute explicitly the
connection or the linearization coefficients, not always is easy to show that they are nonnegative
which were important as we already pointed out. This led to a recurrent method, i.e., to find a
difference equation for the coefficients ¢y, and cjy,n, respectively, and from it to deduce their non
negativity. The first who did it was Hylleraas [38] in 1962 for a product of two Jacobi polynomials.
In fact Hylleraas was able to solve the obtained recurrence relation for some specHylleraasial cases
and prove the non negativity of the coefficients in some of these cases. Later, this method has
been used by Askey and Gasper [13, 16, 17, 20] to prove the non negativity of the linearization
coefficients for certain families of orthogonal polynomials.

More recently, Ronveaux, Zarzo, Area and Godoy [10, 33, 61], developed a recurrent method,
called NaViMa algorithm, for solving the connection problem (1.5) for all families of classical poly-
nomials, as well as some special kind of linearization problem and used it for solving different
problems related with the associated, Sobolev-type polynomials, etc [34, 36, 60]. Although, they
use it only for solving a very special linearization problem, it can be easily extended for solving
the general problem (1.6) [24, 44]. Let us point out that there is a very similar algorithm for find-
ing the recurrence relation for both, connection and linearization coefficients due to Lewanowicz
[43, 45, 47]. The most important tool in the both aforesaid algorithms was the structure relations
(or Salam-Chihara characterization) that the polynomials p, in (1.5) and (1.6) satisfy.

Both problems, connection and linearization, are of great interest also in Physics. For example,
for the 2'—pole transitions in hydrogen-like atoms (and other related systems) the radial part of
the probability is proportional to integrals of the form

o0
lez/ [Lilll‘"l(oqr)L,QLl;"H(agr)]rme_rdr,
0

where I! are the Laguerre polynomials. This kind of integrals also appears in the theory of
Morse oscillators as well as in transitions for spherical-symmetric systems [54]. Furthermore, for
spherical-symmetric the Wigner-Ekkart theorem [28, 66] allows to write the matrix elements of
certain irreducible operators in terms of products of two (or more) 3j symbols (Hahn and dual
Hahn polynomials [52]), 6j symbols (Racah polynomials [52]), etc as well as their g—analogues.

To conclude this introduction we need to say that in the world of ¢g—polynomials [22, 32, 39, 52,
and reference contained therein| there are not so many results concerning to these problems. One
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of the first who was interested on this was Rogers [57, 58] who used a g—analogue of the connection
formula for Jacobi polynomials P,"7(z) = Zgn:/g] ]nPf: B 5; (%), cnj > 0, for the g—ultraspherical
polynomials to prove some Rogers-Ramanujan identities. Also, very recently, this problem has been
considered in [7, 8, 46] for g—polynomials in the exponential lattice z(s) = ¢° [5, 53, 52], where
the authors obtained recurrence relations for the coefficients in (1.5) and (1.6). Again, in these
works the use of the structure relations plays a fundamental role. But not for any arbitrary family
of g—polynomials there exist such relations. In [5] it is proven that all families of g—polynomials
on the exponential lattice z(s) = c1¢® + c3 satisfy such a relation, but for the general lattice
z(s) = c14® + coq™% + ¢3 [22, 52] the problem is still open. Then, the following question naturally
arises: What to do in case when we do not have structure relations? This question was solved for
the continuous case in [12, 63] and for the discrete case in [9].

2 The NAVIMA algorithm.

In this section we will describe a recurrent algorithm for finding the connection coefficients in the
expansion (1.5) for classical polynomials.

This method uses the following properties of the classical polynomials:

1. A second order differential equation:
o (2)py(2) + 7(2)py () + Aapn(z) =0, dego <2, degr =1, (2.1)
2. A structure relation

J(I)p;("lﬁ) = &nanrl(x) + Bnpn(I) + ;)dlnpnfl(x)a n>0, p_1=0, (2'2)

and a three-term recurrence relation
$pn($) = anpn+1($) + Bnpn (f) + ’annfl(x)- (23)

Also the ¢, family satisfy equations of the same type

F(@)qh (z) + T(2)g () + Anm(z) = 0,5 < 2, deg7 =1, (2.4)
F(2) 0 (%) = Gmm1(2) + B () + Fonm—1(),  m >0, q_1(z) =0, (2.5)
Tqm () = Wnm+1(2) + Bin@m (%) + V-1 (). (2.6)

Let us describe the main idea of this method.

First of all, we apply the operator Lo : P — P defined by

277' xr i -
Lofr(@)] = 7(0) 0 4 7(a) T 5, )
to both sides of (1.5). Since (2.4),
0= Zcmn (@) + 7)) (2) + Kpn2)].

Next, we multiply both sides by o and use (2.1) and (2.2). This yields

m

0 =" o { (7@ = T()Aalpn () — F@) ()0, () + () b 1) + Fopn (@) + Fupa-1(2)]

n=0
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To eliminate the term p!,, we again multiply by o, and use the (2.2). Thus,

m

0=>" cmn{a(x)[a(x)

n=0

A = (@) Anlpn(2) + [T(2)0(2) — T(2)7(2)][@nPar1 (@) + Pupa(@) + %pnfl(x)]}-

Now, taking into account that 7, 7, o and & are polynomials of first and second degree (at most),
and using the recurrence relation (2.3) we obtain an expression of the form

M

0= Z Flemo, - Cmn|pn ().

n=>0
Since deg o could be equal 2, then we obtain a recurrence of order 8 (at most):

m—+4

Z f[m,n,pn, Qm]Cmn =0.
k=m—4

Remark 1: Notice that to obtain the recurrence relation we have multiply two times by o, which,
obviously artificially increase the order of the recurrence.

Remark 2: Obviously, the same procedure can be applied to the discrete case, since there are the
corresponding analogues of (2.1) and (2.2).

Remark 3: It is possible to get the minimal order for the recurrence relation if we use also the
following relation for the classical polynomials p,,

pn(z) = anp:1+1(I) + bnp;z(x) + Cnp;zfl(f)-

This yields to a recurrence of order 4 instead of the above 8-th order one (see [10, 33]).

Remark 4: Notice that the algorithm remains valid if ¢, is any polynomial satisfying a linear
differential equation with polynomials coefficients. This implies that the above algorithm can be
used for solving also the linearization problem (1.6) for classical orthogonal polynomials as it is
pointed out in [33].

Before describing the g—analogue of the NAVIMA algorithm [8], we need to introduce some
notations and definitions.

3 Properties of the ¢—polynomials.

Here we will summarize some of the properties of the g-polynomials [52] useful for the rest of the
work.

Let us consider the second order difference equation of hypergeometric type for some lattice
function z(s),

) A gyls) | () [Ay(s) | uls) B
T R T 2 [Az(s>+vx<s>]“y(s)‘°’

VI(s)=f(s) = fls = 1), Af(s) = f(s +1) = f(s),

where 7 f(s) and Af(s), denote the backward and forward finite difference derivatives, respectively,
7(x) and 7(z) are polynomials in z(s) of degree at most 2 and 1, respectively, and X is a constant.

(3.1)
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Usually the above equation is written in the form [52, 51]:

(3.2)

Qi

o(s) = a(z(s)) — 57(x(s)) Az(s —3), 7(s) = T(z(s)).

Notice that o(s) and 7(s) are polynomials in z(s) of degree at most 2 and 1, respectively. It is im-
portant to remark that the above difference equations have polynomial solutions of hypergeometric
type iff z(s) is a function of the form

z(s) = c1(9)q® + ca(q)g™* + c3(q) = c1(9)[¢° + ¢~ "] + c3(q), (3.3)

where c1, co, c3 and ¢#* = % are constants which, in general, depend on ¢ [22, 52, 53].

In the especial case when z(s) = s, Eq. (3.1) becomes the classical second order difference
equation of hypergeometric type for the uniform lattice:

o(z) v Ay(z) +7(z) Ay(z) + My(z) =0, (3.4)

Usually, the equation (3.2) is written in the compact or selfadjoint form

AT e VY() uls) —
Az(s — 1) [ (5)p( )W(S)] + Ap(s)y(s) =0, (3.5)

where p(s) is the solution of the Pearson-type difference equations

A
A=) [o(s)p(s)] = 7(s)p(s) (3.6)

The polynomial solutions of (3.2) is determined by the analogue of the Rodrigues Formula [52,
page 66, Eq. (3.2.19)]

where the function p,(s) is given by
pus) = pls +m) [T ols +9) (38)
and

T(s) = o(s + 3). (3.9)

;From the (3.7) as well as the expression [52, Eq. (3.2.28), page 68] gives

VCES-I-k—_)
Elgn — k |H V(s + B fls—n+k). (3.10)

k=0 =0

we can obtain and explicit expression for the polynomials P, (s),

n m+” z(s +m — s—n+m
Hvx(s + mEL)
=0
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which, with the help of (3.6)transforms [53]

m+n n—1
V(s +m—232)
)g = Bn Z m)g! & X
[T we(s + =)
=0 (3.12)

m—1
s—l]H os+l)+7(s+l)Az(s+1-1)].
=0
Here and throughout the paper [n], denotes the so called g-numbers and [n],! are the g-factorials

) [n]g! = [1]4[2]g - - - [nlq-

M NI

_e-a
—_ q_
These polynomial solutions P,(s), correspond to some values of \,, [52, 53]
==l {5 (@ ) P - 1,5 (3.13)
where (see Eq. (3.2)) a(s) = %ﬂx(s)2 +d'(0)z(s) +a(0), and 7(s) =7'z(s) + 7(0).

Also for the difference derivatives yyn(s), of the polynomial solution P,(s),, defined by

A A A
= P, =AWrp, 14
ykn(s)q Al’k,l(S) Aﬁk,Q(S) AQ:(S)[ (S)q] [ (8)(]] ) (3 )
a Rodrigues-type formula holds
AnrB
N _ AnkDn (n)
Yren(8)g = AV Py (8)g = n(S)], 3.15
kn(5)g (5)q on(s) [on(s)] (3.15)
where the operator v,(gn) is defined by
TP = oL Y [f(s)],

VZr+1(8) VIk42(s)  Voa(s)

and

L( 1
’I’L] q: (n+m—1) qfﬁ(nerfl) ~ &5
A =24 | | "+ In4+m—1],— » =
nk [n — k]q' { < 2 Tl lo 2

_ [n]y! ag
~ [n—k]y! By’

where a, denotes the leading coefficient of the polynomial P,.

Of special interest are the “discrete” orthogonal ¢-polynomials, i.e., polynomials with a discrete
orthogonality

Z P ( (31))1110(31) TAN a:( - %) = 6nmd72w Si+1 =s8i+ 1, (3'17)

si=a

where p(z) is a solution of the Pearson-type equation (3.6), and it is a non-negative function (weight

function), i.e.,
p(si) Az(si—1)>0 (a<s;<b—1),
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supported on a countable subset of the real line [a,b] (a,b can be +00). The orthogonality relation
(3.17) can be obtained from the difference equation (3.2), providing that the following boundary
conditions

o(s)p(s)z*(s — 1) =0, k=0,1,2,.., (3.18)

hold [52, 53], where the weight function p(s) is a solution of the Pearson-type equation (3.6). Notice
that the above boundary condition (3.18) is valid for £ = 0. Moreover, if we assume that « is finite,
then (3.18) is fulfilled at s = a providing that o(a) = 0 [52, §3.3, page 70]. In the following we will
assume that this condition holds. The squared norm in (3.17) is given by [52, Chapter 3, Section
3.7.2, pag. 104]
b—n—1
d;, = (=1)" A, By, Z pn(s) & wp(s —

S=a

(3.19)

M
~

As a consequence of the orthogonality, the g—orthogonal polynomials satisfy the following three-
term recurrence relations (TTRR)

z(5)Pn(s)q = anPny1(8)g + BnPu(s)q + YnPn-1(5)gs (3.20)

with the initial conditions
P_l(s)q = 0, PO(S)q =1.

In the most general case, the solution of the g¢-hypergeometric equation (3.2) corresponds to
the case

o(s) = Als — s1]q[s — s2lqls — salg[s — s4lq, A = const #0,

(3.21)
a(s) +7(s) Ax(s — 3) = Als — 51lg[s — Sa2lq[s — 5sg[s — Sulg-
and has the form [53]
A n
Po(s)g = Bn (j) (s1+ 82 + pl@)n(s1 + s3 + plg)n X
c1(q)q™ 2 K2
4 (3.22)
—n,2u+n—1+ 8iy81— 8,81 +s+
X(SI+S4+,U*|Q)77,4F3 a zz—; ool ! o aQ7]- )
S1+ 8y +p,81+83+ 1,81 +s4+u
or
—A n 3(n 1)
P - B 5 (3s1+s2+s3+s4+="5"2) ( S1+s2+p. «
n(S)q n (Cl (q)qMKg) q (q 7q)n
4 (3.23)
2u+n—1+ Si
X(qs1+s3+l¢; q)n(qs1+54+#; q)n 495 q—n, q ; ,qsl—s’ qsl—l—s—l—u 14, q

q51+52+ﬂ, qsl +53+u’ q51+s4+u

where rk, = q% — q_%, the g-hypergeometric function ,F; and the basic hypergeometric serie Py
are defined by [4]

k

o] —r+1
er< 1,02, .y ) Z (a1]@)k(a2]q)s - - - (ar])r 2 [ kb 1)]” : (3.24)
k=0

b17b2a"'7 bl|q b2|q) (bp|q)k (1|q)k
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and
1,02, G _ - (a1; Q- (ar; Qr 2 vk E(k—1) P
"“019( bbby D Z) —kzzo G a)e - (p ) @8 [(—1%q20] , (3.25)
respectively, and
k—1 k—1
(k= [[la+mly, (a9 = [] (1 —ag™). (3.26)
m=0 m=0

Here also we will deal with the g—polynomials in the exponential lattice z(s) = ¢1¢° + ¢3. In
this case the above representations transform [53]

o(s) = Alg* " = 1)(¢* " — 1),

(3.27)
7(8) +7(8) A als — 1) = Al — (g™~ 1)
Arg\" —2(51452 ) = =
Po(s)g = ? Bng~ > 7 /(51 = 51]@)n(51 — 52|@)n X
(3.28)
—n,31+52—.§1—§2+n—1,51—3_ Lis—sy) ) _
X3F2< 81—§1,81—§2 ;4,972 -
—Alﬂ',q " _2(5 +5+n_—1) _ _
= c Bng™ 21T (51 — 51|q)n (82 — S1l@)n X
1
(3.29)
—n,851+S2—8 —So+n—1,8—35;
x3Fy _ _ 1(s—35) )
81 — 81,82 — 81;¢,q2° 2
or, in terms of the basic hypergeometric series [53]
_ n
— A _M_nsl $1—S1. s§1—82.
Pu(s)g= Bn | ¢ ° (@ nlg™ 5 @)n ¥
c1(q? —q 2)
(3.30)
q—n’ qsl+sz—§1—§2+n—1’ qsl—s a
X3()02 ( q51—§17q517§2 5 q7 qs satl =
A ! *M*n(sﬁr&*ﬁ) 51—51
= B, ——T 1| ¢4 4 (q 5 q)n X
ci(q? —q 2) (3.31)

-n ,S1+S2—51—52+n—1 qsfsl
)

. s—so+1
$1—81 ,52—5 14,4 > .
gorTst g%

Finally, the following relations holds for the g—polynomials in the exponential lattice z(s) = ¢1¢° +
C3.

X (g% q)n 309 ( 4

1. The first structure relation

J(s)m = 5, Pni1(8)g + TuPu(s)g + RuPru1(5)g, (3.32)

vz(s)

2. The second structure relation

[o(s) +7(s) A (s — %)]AL(S)‘] = SpPri1(8)g + TnPn(s)g + RuPn—1(s)q, (3.33)

z(8)
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Table 1: Main data for the ¢g-Charlier polynomials in the lattice z(s) = q;:11_
Pa(s)q (s)g,  wls) = L
(a,b) [0, 00)
ue
o) Al =g ey 7% stan<t
o(s) ¢’ x(s)
3 1
7(s) na2 —q2z(s)
7a(s) —q " 2 2n(s) + a2 T2 g (2],
An [nlaq™ 7
1
By, —
un
: [n]q! eq[(1 — q)g" T ] [n]q!
d2 - yd)n =
no || @ auide e el —aul  fo=1+3
( ) Ms+nq%(n+2s+1)
pris eal(l — Qully (s + 1)
an (=D" -~ @-1+5
un
3. A difference-recurrence relation
APn41(5)q AP,(s)q AP, _1(s)q
P =L,————+M,———+ N,,———— 3.34
n(5)q " Ax(s) + M Az(s) + N Az(s) ( )

where S,,, S, Ty, Tw, B, Rn, Ln, M, and N,, are known constants [5].

The g—Charlier polynomials on the exponential lattice.

The g-analogue of the Charlier polynomials in the exponential lattice z(s) = C-1 defined by

q—1
— j— S
2 (n+5) <q "t g > _
q*t QQO y q, —
0 - (¢ —

(s, q)
) (3.35)
_ nmas) N @Dk )
=q4 ————(9),!, 1<qg<l,0<pu<l1
kz_o (50w ) 8

Obviously, the g-Charlier polynomials cgl” )(s,q) are polynomials of degree n on any exponential

lattice z(s) = ¢1¢° + ¢3. We have chosen ¢; = —c3 = 1/(¢ — 1) in order to have lim, ,; z(s) = s,
i.e., the linear lattice [5]. Their main data can be found in [5].

3.1 The ¢—analog of the Pochhammer symbols.

Let us define the quantities (s), by

= q2 s, (3.36)
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Table 1: Main data for the g-Charlier polynomials in the lattice z(s) = =L (cont).

q—1
Pa(s)q f(s)g,  wls) =L
3.1
an —ug2"" 2
Bn pg®™ 1+ nlg {1 — u(1 — q)q" g2 !
Yn —q"[n]g{1 — u(1 — q)q"}
5 3 (n+1) n
Sn pq? (1—q™)
T nlga® {1 — p(l — q)q"} — pg"t2(1 — q™)
Ry —q¢"* 1 n]g {1 - p(1 — q)q"}
S, 0
_n _1
Tn [n]gq™ 2 (1 —q72 — g™ (1 - q))
Ry, —q[n]g {1 —p(l —q)g™}
L. g
[n+1lq

My

Np, 0

and let [(s)q]n, the g-Pochhammer symbol, be defined by

n-l o1k 1

[(8)gln = (8)g(s + 1)g -+ (s +n—1)g = H !

(3.37)
ko 17 1

Notice that [(s)4]n is a polynomial of degree exactly equal n in ¢°. The polynomials [(s),], satisfy
the following difference equation

(8)gl(s + Dgln — (s +n)g[(s)gln =0, (3.38)
and a recurrence relation
(8)al(5) el = @ "[(alus1 +a " (M)gl(5)gln = 0. (3.39)
Notice also that )
= 7((15;(1)" where (a; = T —aq"
[(8)g)n = e here  (a;q)n kl:[g(l 7). (3.40)

The polynomials (¢°; ¢), satisfy the following difference equation on the exponential lattice z(s) =
c1q¢° +c3

Ag®; )n n—l —1 (. s+n
_— = — 2 N n—1- 4]-
A$(8) q [”]qcl (q aQ) 1 (3 )
Notice that [(s)4]n is a polynomial of degree exactly equal n in ¢°, and that liH[l)[(S)q]n = (8)p is
q—

the classical Pochhammer symbol (s), = (s)(s +1)--- (s + n —1).
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Let us define the ¢-Stirling polynomials or g¢-falling factorials (s),[]"], by

n—1 o [ 1
()7 = (s =g (s =nt 1)y = [T+~ (3.42)
k=0
Also we will use the notation
s. \[n]
(o)) = 5D ) = (1= )1 —ag™Y) - (1 — ag ). (3.43)

T (1-gm

n]

These quantities (s,)[™ are closely related to the g-Stirling numbers Sy(n, k), s4(n, k) by formulas

()5 =D Sq(n, k) (s, ()M =" si(n, k) (s)k, (3.44)
k=0 k=0

and satisfy the following difference equation

(8)g(s = DT = (s =n)g(s)5) =0, (3.45)
as well as the recurrence relation
(8)a(5)51 = ¢ ()51 = (n)q[(5)g)™ = 0. (3.46)
Notice that (a; q)["] satisfies the difference equation on the exponential lattice z(s) = ¢1¢° + c3
A(g*; ) ol s \nel]
- = — 2 N . 4
Ax(s) q [n]qcl (q ’q) (3 7)

3.2 The discrete case.

The most general polynomial solution of the hypergemetric difference equation (3.4) corresponds
to the case
o(z) =Alr —z1)(z — z2), o(r)+7(z)=A(r —71)(z — T2).

Without loss of generality we will consider the case A = —1 and z1 = 0. In this case, the monic
polynomial solutions can be written as follows [4, 53]
(—Z1)n(—Z2)n —n,—x, To—T1 —Ta+n—1
P,(z) = F ’ TR _ 1], 3.48

where the generalized hypergeometric function ,IF; is defined by

p (01020 > _ (a1)k(a2)k - - (ap)k -
P q( b1, boy sl | kz_o (b1)k(D2)k - -+ (bg)r K!

The four referred families of discrete hypergeometric polynomials are the so-called classical dis-
crete orthogonal polynomials: Hahn h%° (z, N'), Meixner My (z), Kravchuk K% (z, N) and Charlier
Ch (), polynomials [51, 52], whose main data in its monic form are shown in Tables 2-3. They can
be expresed in terms of the hypergeometric functions by formulas [52, Section 2.7,p. 49]:

k

(3.49)

, B u" —n,—T B l
M (x) = (7)717('u — 1) 2F1< y 1 M)’ (3.51)
—p)"N! |1
Kh(z,N) = % 2F1( TNQ: ;), (3.52)

1

Cl(z) = ()" F( - ;>. (3.53)

These expressions immediately follow from the above representation (3.48) and its different
limits (more details can be found in [52, 53]).

—n, —T
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Table 2: Main data for monic Hahn and Charlier polynomials.

Hahn Charlier
Pn(z) hiy? (a3 N) Ch(x)
(a,b) [0,N —1] [0, 00)
o(zx) (N +a—=zx) z
7(z) B+1N-1)—(a+8+2)z b—z

o(z) +7(z) (x+B+1)(N—-1-x) y
An nn+a+pB+1) n
NN+a—-z)T(B+z+1) T
p() (N —2)T(z + 1) T(z+1)
a,B>-1,n<N-1 >0
INN+a—-z)'(n+B8+z+1) e~ Myt
pn(@) (N —n— o)z + 1) T(z+1)
(=" o
B (@+B+n+1)n =D
n (28+1)(N—-1)+(n—1)(a—B+2N —2) n
bn _5< a+p+2n ) Tprrnsl)
2 nT(la+n+DIB+n+ 1)I'a+B8+N+n+1) -
" (a+B+2n+1)(N —n—-DT(a+B+n+1)(a+B+n+1)2 H

Table 3: Main data for monic Meixner and Kravchuk polynomials.

Meixner Kravchuk
P () My *(z) K7 (z)
(a,b) [0,00) [0, N]
o(z) T T
7(@) (u = Dz + py ]\ip__p‘”
o(z) + 7(x) px +yp =N
-p
An (1 —mn o
(z) Wy +2) Nip®(1 —p)¥—*
g LTz +1) O(N +1—z)l(z+1)
¥>0,0< <1 0<p<l,n<N
(z) pHT(y + 2+ n) Nlp*tr(1 —p)N-n-¢
o T(1)(w +1) T(N+1-n_o)(@+1)
B T 10y
n—11+pup m
bn n(v+ . )(u—l) —n[Np + (n —1)(5 —p)]
22 n!()np” n!Np™(1 — p)»
" (1= p)rten

(N —n)!

13
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4 The ¢-NAVIMA algorithm in the exponential lattice.

Here we will present the g-analogue of the NAVIMA algorithm. This algorithm have been obtained
firstly in [8] for the lattice z(s) = ¢°. Here we will extend it to all exponential lattices of the form
z(8) = ¢1¢° + c3.

Let us consider two families of g-polynomials P,(z) and @Q,(z(s)) belonging to the class of
discrete orthogonal polynomials in the exponential lattice z(s) = ¢1¢° + ¢3. Each polynomial
P,(z(s)) can be represented as a linear combination of the polynomials Q,(z(s)). In particular

Qm((s)) =Y Cn(m) Py (x(s)). (4.1)

For the family P,(z(s)) we will use the notation

1. o(s), 7(s) and A, for the difference equation (3.2)

2. ayp, By and 7, for the TTRR (3.20) coefficients

3. Sp, R, and T, for the second structure relation (3.33)
and for the @, (z(s))

1. &(s), 7(s) and X, for the difference equation (3.2)

2. @n, Bn and 7, for the TTRR (3.20) coefficients

3. Sp, R, and T, for the second structure relation (3.33)

Since the polynomials of the family @,,(z(s)) are solutions of the second order difference equation
(3.1) the action of the difference operator of second order Ly : P — P, defined by

[r(x(s))] [v[ﬂ'(x(s))]
a(s—3) L vaz(s)

Laln(z(s)] =7() 5 |+ 75 575+ Fnlr(ale)) w(ale)) € 7

on Eq. (4.1) gives us

n _ A VP (z(s)) _, AP, (z(s)) = (s _
m2_:00”(771) [a(s)A 5 [ ] +T(s)7m(s) + Am P (z( ))] =0. (4.2)

Multiplying by o(s) and using (3.2) for the P, family, we obtain the relation

SM A o }:0.

Gy T Pmo(s) = o)l Paa(s)) (4.3)

In order to eliminate %‘&()S)), we multiply (4.3) by o(s) + 7(s) A z(s — 1) and use the second

structure relation (3.33) for the @, (z(s)) family, obtaining

> Cou(m) {[F(s)a(s) — 7(s)7(5)][Sn Pag1 (2(5)) + B Pai((s)) + TnPa(x(s))] +
m=0 (4.4)

+lo(s) + 7(s) A z(s — %)][Xmo(s) — 6(5)/\n]Pn(x(s))} =0.

The last step consists to expand the remaining terms of type o2(s) P, (z(s)), o(s)o(s)Pn(z(s)),
o(8)7(s)Pp(z(s)) and &(s)7(s) P, (z(s)) in linear combination of P,(z(s)) by using the TTRR (3.20)
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repeatedly for the P,(z(s)) family.

After this process, (4.4) reduces to

N
Y M, [Co(m), C1(m), ..., C (m)] Py (a(s))- (4.5)

n=0

Taking into account the linear independence of the family P, (z(s)) we obtain the linear system
M, [Co(m), Ci(m),...,Cr(m)] = 0. (4.6)

These relations contain (linearly) several connection coefficients C;(m) depending essentially on the
degrees of o(s) and 7(s). In the most general situation they are polynomials of second degree in
z(8) = ¢1¢° + ¢3. In this case we obtain a relation of the following type the linear system we are
looking for

M, [Cpia(m), ..., Ch_s(m)] = 0, (4.7

which is valid for m greater or equal than the number of initial conditions needed to start the recur-
sion (m > 8). Notice that for (m < 8) the system also gives the solution, but not in a recurrent way.

Notice that for the g-Hahn, g-Meixner, g-Charlier and g-Kravchuk polynomials, as it is show
in [4, 5] and [52], table 3.3, page 95, the o(s) is a polynomial of second degree in z(s) = ¢°. This
implies that for such polynomials the recurrence relations for the connection coefficient all are of
the form (4.7).

Remark 1: Notice that to obtain the recurrence relation we have multiply two times by o, which,
obviously artificially increase the order of the recurrence (in fact in 4th orders).

Remark 2: It is possible to get the minimal order for the recurrence relation if we use also the
relation (3.34) for the g—polynomials P,. This will yield a recurrence of order 4 instead of the
above 8-th order one.

Remark 3: Notice that the algorithm remains valid if @, is any polynomial satisfying a linear
difference equation with polynomials coefficients. This implies that the above algorithm can be used
for solving also the linearization problem (1.6) for g—orthogonal polynomials in the exponential
lattice.

5 A general algorithm for solving the linearization problem in the
exponential lattice.

In this section we will present a general algorithm [7] to find a recurrence relation for the lineariza-
tion coefficients Ly, j, in the expansion

m—+j

Qu(#($))R;(2(5) = D LmjnPa(e()),  2(s) = e14” + e, (5.1)
n=0

where c¢1, ¢ and ¢ are constants, Qp,(2(s)) = Qm(s)q and R;(z(s)) = R;(s)4 are polynomials which
satisfy a second order difference equation of the form
a(s)Qm(s + 1)q + b(S)Qm(S)q +¢(8)Qm(s — 1)q =0, (5.2)

and
a(s)Rj(s +1)g + B(s)Rj(s)g +v(s)Rj(s — 1) =0, (5.3)
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respectively. A special case of such polynomials are the g-polynomials of hypergeometric type
[4, 52, 53], which satisfy the difference equation (3.2). Obviously, the Eq. (3.2) is of the type (5.2)
(y = Qm), with

a(s) = o(s) +7(s) Aw(s — 1), c(s) = o(s) b(s) = AAz(s— 1) — a(s) —e(s).

vz(s)’ Az (s)
In the following, we will use the operators 7 and Z defined as follows
T:P—>P I:P—P
Tp(s) =p(s+1) Ip(s) =p(s)
Using the above operators, we can rewrite the Eqgs. (5.2)-(5.3) in the form
a(s + 1)T°Qm(s)g + b(s + DT Qm(s)g + (s + )IQm(s)q =0, (5.4)
and
a(s + 1)T?R;j(s)g + B(s + )T R;j(s)g + (s + 1)IR;(s)g = 0. (5.5)

satisfy the linear difference equations

1)
It is known [7], that, if the polynomials Q,,(s), and R;(s)q
u = Qm(5)gR;(s)q, satisfy a four order difference

(5.4) and (5.5), respectively, then the product u(s),
equation of the form

Liu(s) = pa(s) T uls)g +p3(s)T u(s)g + p2(s)Tu(s)g + p1(s)Tu(s)g +po(s)Tu(s)g.  (5.6)
The idea of the proof is the following [7, 23, 24].

Since (5.4)-(5.5),
a(s + Da(s + 1)T 2u(s) =

=[b(s+1)TQm(s)g + c(s +1)IQm(s)g] [B(s + 1)TRj(s)g + v(s + 1)IR;(s)4],
which can be rewritten as

Lou(s) = a(s + Da(s + )T %u(s) — b(s + 1)B(s + 1)Tu(s) — c(s + 1)y(s + 1)Zu(s) =
=b(s+1)y(s + 1) [TQm(s)¢ZR;j(s)g] + c(s + 1)B(s + 1) [ZQm(5)gTR;(s)q] =

= 11(8) [TQm(8)gZR;j(5)q] + 12(5) [ZQm(5)q T R;j(5)q] -

Next, we change in the last expression s — s + 1, and substitute in the right-hand side the
expression T2Qy,(s), and T2R;(s),, using the Eqgs. (5.4)-(5.5), respectively. This allows us to
rewrite the resulting expression in the form

Mzu(s) = mi(s) [T Qm(s)TR;j(s)q] + ma(s) [LQm ()T Rj(s)q],

where M is a difference operator of third order (there is one term proportional to 72), m; and msy
are known functions of s. Repeating the same procedure, but now starting from the above equation
we obtain
Nau(s) = ni(s) [TQm(s)qTR;(s)q] + n2(s) [ZQm(s)gT R;(s)q] -

Then

Lou(s) I1(s)  l2(s)

Msu(s) mi(s) ma(s) |=0. (5.7)

Ngu(s) ni(s) no(s)

Expanding the determinant from the first column, the Eq. (5.6) holds.

Remark: The above equation (5.7), and its proof, remains true for any lattice function z(s) and
not only for the exponential lattice z(s) = ¢1¢° + ¢3.
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5.1 The generalized linearization algorithm.

As before, we will suppose that Q,,(s), and R;(s), satisfy the equations (5.4) and (5.5), respectively,
and that P,(s), satisfy a the three-term recurrence relation (3.20) and a structure relation in the
exponential lattice z(s) = ¢1¢® + c3 (3.33). Notice that the latest can be written in the equivalent

form [7]
n+2

S()TPuls)g= Y Ar(n)Pi(s)g, Z(s) =o(s) +7(s) Ax(s — &

k=n—2

N|—
p—

(5.8)

To obtain (5.8) from (3.33) we need to use that o(s) + 7(s) A (s — 3) is a polynomial of degree
two in x(s) and that Axz(s) is a polynomial of first degree in z(s) (which is not valid in general for

any lattice z(s)), as well as the TTRR (3.20).

From the above expression (5.8), one easily obtains that

n+4
S(8)S(s + 1)T?Pa(s)g = > Ag(n
k=n—4
n+6
S(8)S(s + 1)B(s + 2T Puls)g = Y Ap(n (5.9)
k=n—6
n+8
S(5)S(s + DE(s +2)8(s +3) T Pa(s)g = Y Ap(n
k=n—8

To obtain a recurrence relation for the linearization coefficients we can do we can follow an idea
similar to the one exposed in the previous section for the connection problem:

Since (5.6), L4Qm(s)q R;(s)q =0, then applying L4 to both sides of (5.1), we find

m+j
0= Lmjn%(s)E(s + )X (s + 2)B(s + 3) L4 P ((5))-

Taking into account that £, is a four degree operator, and using the structure relation (5.8) as well
as (5.9) we find

m+7J n—+8 n+6
O_ZLmjn{pél Z Ak +p3 S+3 Z Ak

k=n—8 k=n—6
n+4
+p2(s)X(s + 2)X(s + 3) Z Ag(n
k=n—4
n+2
+p1(s)X(s + D)X(s + 2)2(s + 3) Z Ak (n
k=n—2

+3(8)B(s+ 1)X(s+2)2(s + 3)p0(3)Pn(3)q},

from where, and by taking into account that X(s + k), & = 0,1,2,3, is a polynomial of degree
two in z(s) = ¢1¢® + ¢3, as well as the TTRR (3.20) we obtain that the coefficients Ly, satisfy a
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recurrence relation of the form
cx(%,7,1) Linjntr = 0. (5.10)
k=0

In general, the present algorithm may not give the minimal order recurrence for the linearization
coefficients. To get the order » minimal it is necessary to use more specific properties of the families
of polynomials involved in (5.1).

Remark: Notice that the present algorithm also works for the case when the product @, (2(s))R;(z(s))
satisfy any kth-linear difference equation with polynomial coefficients (not necessary of order 4 as

n (5.7))., so it can be used for solving more general linearization problems involving the product of
three or more g—polynomials. Notice also that will be possible to reduce the order of the recurrence
relation if we use the relation (3.34) for the g—polynomials.

Obviously the following question arises: And what happens if there is not structure relations
(3.33)7 For example, for the g—polynomials in the general lattice this question is still open. In the
next section we will describe an alternative algorithm which will allow us avoid this problem.

5.2 An example.

Since the product [(s)4]i[(s)4]; is a polynomial in ¢*, it can be represented as a linear combination
of the single g-Pochhammer symbols [(s,)],. In particular,

i+7

[( q]] ZLz]n (5.11)

In order to to obtain the recurrence relation for the linearization coefficients L;j, in (5.11) we
apply the operator

()oT — (s +1)q (s +4)gT (5.12)

to both sides of (5.11). Using formula (3.38) we obtain the following expression

—1\? qs+i 1 qs+j -1
(T=3) e - (S5 (5 [(sqnn] L 61
Taking into account the Eq. (3.38) for the g-Pochhammer symbol, we find
ity s s+n s+1i s+7
q° —1 g™ -1 ¢ -1 ¢ -1
’ nz::O ”"[(SQ)]"Kq—l)( g—1 ) <q—1>(q—1

i+

= Z Lijn[(sq)]n [(S)q(s + ”)q —(s+ i)q(s + j)q] .
n=0

i+7

O—ZLmn

Using the identity
(s+n)g=4q"(s)g + (n)g,

the last expression transforms

i+

0= Lijnl(s)ln {(5)3la" = "]+ (5)g[(n)g — ¢'(§)g — ¢’ (8)g] = (D)q (i)}
n=0
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from where, using Eq. (3.39), we arrive to the expression
i+j o
S Lin{a 2 la" — ¢ ()t
n=0
+[((n)g = d'(G)g = @ (D)g) ¢ = (@" = ¢"7) (472" (n+ 1)g + ¢ " (0)g)] [()]n+1+

+ [(a" = a2 = (g = (g = @ (0)g) a7 = ()g(i)a] [(5)]n } =
= Dan{a 0" = sl

g A+ Vg + ¢TI L4 ¢ (G) g + g™ () g = 2(n + 1)) (591~

~g 720 [(n)g = "M ()g] [()g = @ @)a] [(59)]n } =0

Then, the following three-term recurrence relation for the linearization coefficients L;;, holds
ApLijn—2+ By Lijn—1 + CpLijn =0, (5.14)
where
An =g = ¢,
By =—q"(n)g =g [q7(f)g + g7 (i)g — g (n)g — gV (n —1)g] (5.15)
Co =—=¢" (g (n)g—a7()q) [a7"(n)g — g "(0)g] ,
with the initial conditions L;j;y;j41 = 0 and L;;;4; = q .

To solve the above recurrence we apply the algorithm qHyper [1, 2, 56] which allows us to find
an equivalent two-term recurrence relation for the linearization coefficients. Namely,

g i+ - n)g

Lijni1 = — Ly 5.16
T T G 1) (G —n—1), ™ (5.16)
so that,
i G000 (<)l nl(=)glits
Lii — (—1)iti—n ‘ qirr) CEkn] 5.17
in = (=177 g : (i+j—n) (547

for n > max(i,j) and vanishes otherwise.

Notice that, in the limit ¢ — 1, the above recurrence relations (5.14)-(5.16) transform into a
two-term recurrence relations for the standard Pochhammer symbols (s),, of the form

(k—i—3j=DLijn1— (k= G+ Dk +i)Lijn =0,  Lijivjr1 =0, Lijiyj =1,
which solution o ) )
(=" (=)isjn(=1)ivjn

- - n 2 max(i,j)
+ 7 —n)!

0 otherwise

corresponds to (5.17) in the limit ¢ — 1.

The same can be done in the case of ¢—Stirling polynomials [7].
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6 An alternative algorithm for the connection and linearization
problem.

In the this section we will describe the g-analogue [6] of the method presented in [9, 11, 12, 63]
for finding explicit expression of the coefficients ¢, and I, of (1.5) and (1.6) in terms of the
coefficients of the second order difference equation of hypergeometric-type in the general non-
uniform lattice z(s) = c1¢° + c2¢™° + ¢3. The resulting expansion coefficients will be given in
a compact, analytic, closed and formally simple form in terms of the polynomial coefficients of
the corresponding second-order difference equation(s). Notice that the above lattice contains, as
a particular case, the exponential lattice x(s) = c¢1¢® + ¢3 considered in the previous Sections
[7, 8, 46]. The advantage of the present approach is that it only requires the knowledge of the
second order difference equation satisfied by the involved hypergeometric ¢g-polynomials as well as
their hypergeometricity, i.e., the Rodrigues-type formula, and it do not require neither information
about any kind of recurrence relation of the involved discrete hypergeometric g-polynomials nor to
solve any “high” order recurrence relation for the connection coefficients themselves.

6.1 Main theorems.

Here we find the explicit expression of the coefficients ¢y, in the expansion of an arbitrary g¢-
polynomial @, (z(s)) = Qm(s)y on z(s) in series of the orthogonal discrete hypergeometric set of
g-polynomials {P,} in the same non-uniform lattice z(s), i.e.

S)g = Z CmnPr(8)q - (6.1)
n=0

Theorem 6.1 [6] The explicit expression of the coefficients ¢y, in the expansion (6.1) is

bnl

Cmn = Z A ]pn(S)ALBn(S—%)
B b1 (6.2)
= (-1 d;’ > W(SY e VZ(S) [Qm($)alpn(s = n) A a(s — 21).
" s=a 2

Proof: Multiply both sides of Eq. (6.1) by Pi(s)gp(z) A z(s — 1), and summing between a and
b — 1, the orthogonality relation (3.17) immediately gives

Conm, = 2ZQm Po(s)gp(s) Ax(s—1). (6.3)

”sa

Using the Rodrigues formula (3.7) for P,(s), we find

emn = QZQm $)g 7" [pn(s)] A (s = 3) = QZQm o [Vl (64)

” s=a ” s=a
Then, by using the formula of summation by parts

b1 |
S f@) v gle) = flag@)| — 3 gloi—1) 7 f),

Ti=a T;=a

we have
b—1

B b—1
=2 VQu()g 71" [pa (D) (6.5)

a—1 "sa

= B 0 (5)e 7 [n(9)]

t=s—1
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Notice that the first term is proportional to pi(s) = o(s+1)p(s+ 1), so, since the condition (3.18),
it vanishes. Now, making the change s — s — 1 in the second term, we find

B b—2
Cun === > BQu(s)g 7" [ou(s)].

n os=q—1

But
\Y
V2(s)

then, the last equation transforms

Vs [on(9)],  waals) = vals + 1) = Aa(s),

ZMlpn(s)] =

cmn=—§g Z M m()] 7 [78lon()]]

Repeating this process n times, and using v% [on(8)] = pn(s) as well as that p,(a — k) = 0 for

k=1,2,...,n (see Eq. (3.8)), we obtain the desired expression (6.2) for cp,.
The second expression can be obtained analogously [6]. [

If we now assume that (), is an hypergeometric polynomials which satisfy an equation of the
form (3.1) but with coefficients &, 7, and )\,,, then, by using the Rodrigues-type formula (3.14) for
the polynomials Q),,, we obtain the following result.

Corollary 6.1 The explicit expression of the coefficients cpy in the expansion (6.1) when both
polynomials are of hypergeometric type is

(— 1)"B B mz” —n]q!

c = X
" P —n—1,!
b—n—1 . 6.6
i s = Dp(s) Bm(s = 1= §) B n(s ~ ) (6.6)
e pnl?) H Az (s k—l—l—i—l)
A simple consequence of theorem 6.1 is the following result for the linearization problem:
m—+j
R;(8)qQm(s)q = Z LimnPn(8)q (6.7)
n=0

where {P, } is a discrete orthogonal set of hypergeometric ¢g-polynomials which satisfy the difference
equation (3.1) and @Q,, and R; are arbitrary g-polynomials on the same lattice z(s).

Corollary 6.2 The explicit expression of the coefficients ljyy in the expansion (6.7) is

bnl

Limn = Z N oRj(8)q) pn(s) D an(s 1) (6.8)

In the special case when R, is the j—degree g-hypergeometric polynomial satisfying the following
second order difference equation on the non-uniform lattice z(s)

N A yls) o, Ayls)
") Rt — D vt )

the following theorem holds

+ Xy(s) =0, (6.9)
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Theorem 6.2 The explicit expression of the coefficients ljy,y in the expansion (6.7) is given by

B B, i
ljmn = J Z ka
(6.10)
b_fl pn(s) A xp(s — %) A=k QO (s) (j ( "
" —  p(s+n—k) [ m(8)gl[v pi(s +n — k)]
or, equivalently,
(=1)" By, ~3 - []q! -
l'mn i X
] & k=0 [K]g!ln — k]!
(6.11)

b—n—1
% Z pn(8) A (s — %)[

e G EE DA LAVIO

S=a
Proof: We will start from Eq. (6.8) and we will use the analog of the Leibnitz formula in the
non-uniform lattice (3.3) [4]

n

AIf(s)o(s) = 3 ﬁ AB F(s 41— k) A g(s), (6.12)

to A [Qu(5)gR;j(5)g]- Then, using the Rodrigues-type formula (3.14) for AR R; (s +n — k),

A;,B; ;

k _ k () 15

ABRj(s+n—k)q = m Vi 1pi(s +n— k),

the desired result holds. The second formula can be obtained analogously. [ ]

A simple corollary of the above theorem is the following

Corollary 6.3 The explicit expression of the coefficients ljmn in the expansion (6.7) is given by

bjmn = : ‘ 6.13
! Zk]q n_k]q sz j—k—l]q!x ( )
b—n—1 Pn(S)A$n(S—%)ﬁj(8+n—k—1) ij(s+n_k_l_%) A(n—k)Q ( )
g ; pr(s+n—k) J—k [ m(8)ql s
H ij(ern_k_%Hl)
m=0

Notice that the corollary 6.1 also follows from the above formula if we put m = 0 since Qg = 1.

6.1.1 The classical discrete case.

In the especial case when z(s) is the linear lattice, i.e, z(s) = s, from Theorem 6.1 and 6.3 we
recover the main results in [9] for the connection and linearization problems, respectively

Theorem 6.3 Let be x(s) the linear lattice x(s) = s. Then, the explicit expression of the coeffi-
cients Cpyy in the expansion (6.1) is

n b—n—1 n
e = TS Aot + ) [[ ols + ) =
S_a = (6.14)
n b—1 n—1
= C B S G Qus)o(s) T os ).

n s=a k=0
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If Q. is also an hypergeometric polynomial, then

n St b n—1lm—n 8 m—n
e = (—=1)"BpBnAm Z Pn ( )(_ka;n(s_k):

dz (s)
sS=a =
(6.15)
5 q b—1 m—n
(=1)"Bp,BmAmn pn(s —mn) < m—n > b~
— UL -1 s—n—=~k).
et 55 e (0 ) (W=
Corollary 6.4
m b—1
-1)"m! B
(T)m = Z AmnPn (), amn = ﬁd_; (Z)m-—npn(z —n) , (6.16)
n=0 TN g=q
m b—1
—-1)"m! B, m—n
=S dpupn(®), o = ﬁﬁ (@—n)™ @ —n).  (6.17)
M x=q

Theorem 6.4 Let be x(s) the linear lattice x(s) = s. Then, the explicit explicit expression of the
coefficients cjmy in the expansion (6.7) is given by

ky

”B B
Cimn = ( L Z < > jEX
dy k=k_

i Pn(8) - ki n—k - =
ZZ L pi(s+n—k =DV FQu(s +n—k)] =

pulie pr(s+n—k)
_ (=1)"BuB; "BB pls—=m) . ke (o
- Z( >AZZZ F (IR ) e kDI s~ )
where k_ = maX(O, n —m) and ki = min(n, j).

For completeness, let us point out that there is another equivalent expression for the connection
coefficients cjo,, = c¢j, which sometimes is very useful. The general polynomial solution of the
equation (3.4) is given by (3.48). Then, the solution for the direct connection problem

j
x) = Zajkﬂv[k}, (6.18)
k=0

e (— 1) (=21); (~Z2); — (=n)
_ \= —T1)j(—=%2)j(r2 —T1 — T2+ 7 — 1)g(—n)k
N (=Z1)k(—Z2)k (22 — T1 — T2 + 7 — 1) k! : (6.19)

ajk

This formula inmediately follows from the identity z¥] = (—1)¥(z), and the definition of the
generalized hypergeometric function (3.49). Let us also remark that sometimes it is better to
use the combination of the above formula with formula (6.17) wo obtain the searched expansion
coefficients. Notice that

J J k J [i—n
= Z ajkx[k} = Z Ajk Z d]mpn(f) = Z (Z a; k+ndk+nn> pn(a:)a (6'20)
k=0 k=0 n=0

n=0 \k=0

Cjon
where a;jn and djyip,, are given by (6.19) and (6.17), respectively. Again here, the coefficients
cjon = ¢jn depend only on the coefficients of the second order difference equation of hypergeometric

type (3.4).
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6.1.2 The classical continuos case.

Finally, we will show how from Theorem 6.1 we can recover (formally) the general results for the
continuous case [11, 63]. In order to do this we notice that, formally, if we make the change
z(s) = sh — =, then [52],

Pala(s+1) = Pa(a(s) _ Pa(sh+h) = Pa(sh) _ Pa(z+h) = Pa(z)

(s + 1) — zk(s) h N h

. APy(z(s)) d* P, (z
Thus. lim —™\20
1500 Az (s) Cdak
Eq. (3.1) transforms into the classmal hypergeometrlc differential equation [51, 52]

= P! (z) and l1m AP, (s), = . Then, by similar limiting processes
o(z)P)(x) + 7(z) P (z) + A\pPo(z) = 0.

where o(x) = limy,_,07(z(s)), 7(z) = limy_,o 7(z(s)) being z = sh. Furthermore, the Pearson-type
equation (3.6) becomes [o(z)p(z)] = 7(z)p(z) and also [52] pn(s;h) — p(z)o™(x). Finally, the
Rodrigues-type formula (3.7) transforms into

d*P,(z)  ApB, d*7F

. Anan (n) . n
AP, (5), = S5 G0, 0)] > LEE = ST ) ()
Now we put z(s) = sh in (6.2)
. (b=1)h—nh
(1) = W 5" A (@t s/ 0
n z;=ah
B nh

= Z A [Qu(2i)g) pr(@i/hi Wby Tit1 = i + he

Let us prove that the above sum transforms in the limit in a integral from which the main result
in [63, Theorem 3.1, page 163] easily follows. More concretely,

-1 an Bdk m "
fim () = g [ 2 010 )

where d2 is the squared norm for the polynomials orthogonal with respect to p(x) [52].

In order to do that, let us show that the quantity

B—nh

@nopn) =| 3 50 @n(st] o/ 15100 / QU (@)p(x)" () d

can be small enough for A sufficiently small.

B—nh

(@ )| < Z A [Qm(sh)g] — QW) ()

=

Pn(«rz/h h)

B—nh B—nh

+ 2 | @ @) {paaishsh) = pulw) Bt | 32 QU (w)pn(wi)h / Q) ()pn () da
T,—A

T,—A

where ng) denotes the n-th derivative of @, and p,(z) = p(z)o™(x). Let consider first the case
when B is bounded. In this case the first integral can be small enough (less that €/3) for h sufficient
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small providing that py, (x;/h; h) is bounded. In the following we will suppose that the limit function
pn(z), n > 11is a continuous function in [A, B]. For the second sum we can do the same since Q,,
is a polynomial and then it is bounded in any closed interval. Finally we will consider the last sum
which can be rewritten in the form

B B

ZQ()sznIz / Q) (z)dz| + Z ) (23) pu (23) D] .

T, =A r;=B—

Notice that the first sum can be less €/6 since it is a Riemann sum corresponding to the inte-

gral ff Q%) (2)pn(z) dz, and the last sum obviously tends to zero so, for sufficiently small h, it
is less than €/6. So, for any given e > 0, one can chose a sufficiently small h so that |I,(Qm, pn)| < €.

Finally, to prove the result for the unbounded B we use the fact that, in this case, the functions
pn(zi/h;h) as well as py,(z;) tend to zero faster than any polynomial tends to infinity when z; — oo
(see the boundary conditions (3.18) for the polynomials on the lattice z(s) as well as for the
continuous case [52, Eq. (1.3.1) page 7]. Then,

|ITL(QTTL7 pn)| <

Z\A [Qm(sh)q] — Q43 (1)

a1+ 3 |Q)w0) Upula /i ) = puw) | 1

T,—A
> € € €
+x§4Q()szn$z / Q (z) dz §§+§+§=€-

To conclude this Section let us point out that here we have taken the limit formally and have
proved that our main result, i.e., formula (6.2), transforms into the corresponding one for the
continuous case [63], but solving concrete examples one must to be very careful since, for instance,
in the limit Hahn — Jacobi, the parameter A = 1/N where N is the total number of points in the
lattice and the Hahn polynomials explicitly depend on it. More information on how to take limits
for concrete families can be found in [32, 39, 52, 53].

7 Examples.

7.1 g—polynomials.
7.1.1 Connection between (¢°;¢)!"! and ci(z, q).

Now will apply theorem 6.1 for finding the connection coefficients ci,;, in the expansion

den et (7.21)

where (a;¢)* is defined in (3.42), and c4(s,q) is, as before, the g-Charlier polynomials on the
lattice z(s) = quT—ll (3.35). In this case, since (3.47)

n — a\"Im (m 1)
INQ) [(qS;Q)[m]] = g i [Af(s)] (o) = 4 Q)[n[l _]q;q]j (% @)™

2 (n-1)—n(m-1) (1 = @)"Tg[m + 1] (¢ )
Lylm —n+1] e

= q
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(g% 1

In this case, using formula (6.2), the expression G = G 88 well as
0 m n],s o m n],s o
Z (¢% q Z Z q q Z — ,mn “eg(2),
§= s=m—n s s=0
we obtain
=100 () (g (722
q

The above formula is the g-analogue of the so-called inversion formula for hypergeometric polyno-
mials (compare with the explicit expression of the g-Charlier polynomials (3.35).
Remark. If we rewrite (7.21) in the form

qumncﬁ ) =i () o, (7.23)
q
taking into account that
s: q)lm]
lim —— = (s)™,
=1 (1 —q)m

we obtain in the limit ¢ — 1

_ édmncﬁ(s), i = ( " ) (=1)™ ()™

Using again the fact that for the polynomials ¢, (s), the leading coefficients are given by a, =
(—p)™", the above result coincides with well know classical result (see e. g. [9])

7.1.2 Connection between (¢°;q),, and c},(z,q).

First of all we will apply theorem 6.1 for finding the connection coefficients ¢}, in the expansion

m

(@5 Dm =D, chnch(s,q), (7.24)

n=0

where (a; q)y is defined in (3.26), and c, (s, q) is the afore mentioned g-Charlier polynomials.

Since we are working in the lattice z(s) = qqs 11, we have
(n) AN (1= g)"[m] g2V
n s. _ —2(p—-1 s. — q: s+n,
e R el e I T e (A

nno1) (L= q)"Tq [m+1]( s, )
Fq[ —TL-I‘].] ) m—-n-

= q

Then (6.2) gives

)

3 q%(5n—7)(q 1) " 0 s+n;Q)m—n (1 —Q)qu+1]s
" egl(1 = q)ug < >q 2:;) (49)s

where the g-binomial coefficients are defined by

( 7: >q 0 q)(jég;)gl)mn
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In order to take the sum in the above expression we will use the identity [32, Eq. (1.2.34) page 6]

(aq’;q)k = @) , (7.25)
9 S
as well as the expression [32, Eq. (1.5.2) page 11]
(@™)s _ N~ @505 )k g™ (7.26)
(™9)s = (4" )k (4 9)
Then, denoting by z = (1 — q)ug™t!, we have
i @ @mn 2* _ i (4" @m—n(d™:0)s s _
pr SR CHOR = (0"0s(69)s
o o0
(0" Q)pd™ o (€% Dpd™
= (0" O)m- 2=
(550 "; (" @)1 (@; ) Sz:% (59)s
o o
(" ™ Q)rg"" 2 [ k E(kl):| 2k
= (¢"; @)m— 1)kq2 —
(550 "; oc@ae [ ; (59)s
= (¢"; 1— n+1 ¢ ntm41 1 _
= (0" Omngl(1 = Qg™ o | 7 0 5010 1-q)).
For the third equality we have used the identity [32, Eq. (1.2.32) page 6]
— k E(kfl)fks
(@% 9k _ (=1)"q2 (7.27)
(a59)s (45 0)s—k
Then, for the coefficients ¢, , we finally obtain
n _ m n—m
= (0" @m-np™(q — 1)"q5 "D ( . ) 191 ( qqn sq,pg™ (1 —q)> : (7.28)
q

Remark. Notice that, since

M_icmiﬂcu

- n
1=gm™ L l-—gm
and taking into account that

lim (&% @)m = (8)m, limc(x,q)=cl(s)
q—1 (1 — q)m Toge1 MY AT

we obtain taking the limit ¢ — 1

(=S emacthemn= (7 ) Dy (| ),

n=0 " (n a

where ch(s) denotes the classical (non monic) Charlier polynomials [52, 53]. Since for these poly-
nomials the leading coefficients are given by a, = (—u)™", the above result coincides with the
classical result given in [9].



28 Linearization and connection problems for discrete hypergeometric polynomials

7.1.3 The g—Charlier polynomials in the exponential lattice.

We will solve now the connection problem
e (8,q) Zc nCh(s,q). (7.29)

Then, by using the expression (6.6) of the corollary (6.1) where Qy,(s)q = ch(s,q) and Py(s), =
ch(s,q), respectively, we obtain

l
n L(m—n)(m—n+5) m—"n —1) 5(l—2m~1) o0 1 _ n+11s—1
ann:<ﬁ> <m>q4 +1 Z( L I~ ( )Z Qe I _
n ), eql(1—aq)q"p] = O

gl (1-q'y =
l _
(W (™ A mn+5mn B grmmtt m—mn\
~ n q I q )
q 1=0 q
o0 o0 z 5 k
where we also use the fact that

Now, applying the indentity (7.27) to (q; QDm—n—1 (k = l), and using the g-binomial theorem
32, §1.3, Eq. (1.3.14) page 9],

we obtain the following expression for the coefficient ¢,
n
m Lo _ _ _
ann — (%) < o > q4(m n)(m—n+5) (qn m+1 [y I;Q)m—n- (7.30)
q

Remark. A simple calculation shows that the equation (7.29) transforms in the limit ¢ — 1 into

w5 (2) ) (1)

for the (non monic) Charlier polynomials and this coincides with the classical results for monic
polynomials (see e.g. [9]) since the leading coefficients for the Charlier polynomials ¢ (s) is equal

to (—p)™".

7.1.4 Examples of linearizations.

Let us show here how we can conbine the results of the previous section to solve some linearization
problems. We start finding the coefficient L;j, in the expansion

i+j

()P =" Lijn(a)(s)™, (7.31)

n=0
and use the identity (s)t[]n} = (=1)"q¢7"[(=5)4-1]n, then, from (5.11) and (5.17) we find

Lijn(q) = (=1)"™7"¢" "I Lisn(q™ "), (7.32)

thus

= titij—n (=Dalivinl(=)glitj n -
L’L]n = ql+J+ZJ n Q(Z _IJ-] = n)qq' J , fOI' n Z max(l,]), (733)
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and vanishes otherwise. Notice that in the limit ¢ — 1

(—=7)itj—n(—1)itj—n
= (i4+7—n)

n > max(i, )

Lijn = : (7.34)
0 otherwise
The above problem can be used to solve the linearization problem

m+j
()" ()F =D e juchls.a), (7.35)

n=0

since i
gn = D Lmj kan @)k 0
k=0

where Ly, 11n(q) are given in (7.33) and 1 n Dy (7.23). Doing, some straightforward calculations

(in which we use some identities involving the (a;q), and (a;q)™ symbols [32, 39]) lead us to the
expression

g @I e\ o (g g L
e (¢—1)" no ) g =)

Here, we use the function ,$,, defined by

~ 1,02, -y Gp _ sl (a1§q)k"'(aq~QQ)k Zk
T%< biba, by 2) - ZB (15 Q)r - (bps Dk (G D (7.36)

7.2 Examples for discrete classical polynomials.
Inversion problems of classical polynomials.

Here we will give the explicit closed expressions for the coefficients of the inversion formulas
which follows from Theorem (6.3) of the classical discrete polynomials associated to the polynomials
(2)m and zml, respectively. From then, the corresponding inversion formulas associated to the
polynomials ™ follow in a straightforward manner.

7.2.1 Charlier Polynomials C}/(z).

The use of the inversion formula (6.16) related to (z),, and the main data of the monic Charlier
polynomials (see Table 2), as well as formula (7.43), allows us to find the corresponding expansion

coefficients
( 1 m=n=0

um!1F1<1_2m‘—,u> m#0,n=0

m \ I'(m) n—m
(n)I‘(n)lF1< n ‘—M> m # 0,n # 0
For the expansion of ™ we use Eq. (6.17) and Eq.

1F1< “
a

Umn =

\

a:) =e", Va € R. (7.37)
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to obtain that

7.2.2 Meixner polynomials M, " (z).

Analogously, for the monic Meixner polynomials we find

( 1 m=n=>0
| _
,wym.QF1< ! s 1+7 —’u ) myéO,n:O
1—p 2 uw—1
Umn = )
m \ I'(m) n—m,n+vy| B
F ’ —_ 0 0

and

(Yo i)

7.2.3 Kravchuk polynomials K},(z, N).

For the monic Kravchuk polynomials, we obtain

( 1 m=n=20

Npm!2F1<1_m’21_N p) m#0,n=0

Omn = ’

(”Fr((TZ))QFl(n_mhn_N

p) m#0,n#0

and

7.2.4 Hahn polynomials heoP (xz,N).

Finally, for the monic Hahn polynomials, one has

r 1 m=n=2>0

o B2 F 92— N -« 1 m=#0,n=0

Umn = )

m \ I'(m) n—ml4+n—Nn+pB+1
(n)f‘(n) 3F2( n,2n+a+ B+ 2 ‘1> m#0,n#0

and

P ( m ) (N —=m)m—n(n+8+1)mn
AN 2n+a+B+2)mn
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Some of the above formulas have been found by different authors using different approaches.
This is so for the Stirling inversion problems of the Charlier [24, 40, 62, 68], Meixner [40, 62, 68],
Kravchuk [40, 62, 68] and Hahn [30] polynomials.

Connection problem between discrete hypergeometric polynomials.

In this section we will provide the formulas connecting the different families of classical hyperge-
ometric discrete polynomials, which generalize results already obtained by different authors using
different approaches, e.g. [10, 30, 40, 43, 62], in particular, the most general case involving two
Hahn polynomials is given (see formula (7.51) from below).

The first eight cases can be computed by using (6.15) and the other ones with the help of (6.20).

Notice that if we equate both expressions (6.17) and (6.20) one can obtain different summation
formulas involving terminating hypergeometric series of the type given in the Appendix.

7.2.5 Charlier-Charlier

From formula (6.15) and using the main data of the Charlier polynomials (see Table 2) we find
for the connection coefficients between the families

J
CHz) = ejnC) (),
n=0

the expression

=} ) - (7.39)

7.2.6 Meixner-Meixner

For the Meixner-Meixner problem we have

J
M) = einMy? (x),
n=0

where

(5 (L= B)meEi T + )
‘( ) Tlatm)(p—1)y "

Jj—n . k .
IY L BY T(n+k+a) n+k+a, j+y
XZ( 1) < k >(,u> I‘(n+k+7)2F1 n+k+-y

k=0
:1: J—
z—1]

)

Using the transformation formula [35, p. 425]

2F1(a b I):(l—:ﬂ)_agFl(a C_b
C C

(7.39)
=(1 —fﬂ)c_a_b2F1( c—ac c=b ﬂv>,
the identity ( J ;n > = (—1)’“7(” ;'])k as well as formula [35, Eq. 65.2.2, p. 426]
o (@) (b) c—a c—b a b
k - - _ _ \etb—c _
kZ_O K(0)r Yy 2F1< o+ k x) =(1-2) 2F1< . |Ety xy). (7.40)
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we finally obtain

=7 ) (- j_n( Ln)j g oFy MT
jn — n N’_l Y j—n 201 n-l-’)’

In particular, for the special case & = -y, Eq. (7.41) becomes

n=(3) o (i)

The second case corresponds to 8 = u, then (7.41) becomes

Cjn = ( 7]1 > (ﬁ)yﬂ (Y = a@)jn-

7.2.7 Kravchuk-Kravchuk.

M) (7.41)

For the Kravchuk-Kravchuk expansion,
J
KP(x,N) = ¢jn Ki(z, M), j <min{N, M},
n=0
the same procedure used in the Meixner-Meixner case gives us
J . i n—j,n—N
Cjn = < n ) (M —=j+1)jn(=p)" 2F1< n—M

In the particular case p = ¢ its reduces to

and for the case M = N

o < : ) <£>” (4= pY (N =+ .

g) . (7.42)

p

n

7.2.8 Meixner-Charlier.

In this case we have the expansion

with

o= (1) S () () (L |

k=0
— x) . (7.43)

If we use the transformation formula [35, p. 431]

1F1( “ x) =6x1F1< e
C C

and the sumation formula [35, Eq. (66.2.5), p. 431]

Z (Z!zcglzkylel( Cik x) = eylFl( Z T —y)_ (7.44)
k=0
we find -
. j-n el
()2 (2 8) o
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7.2.9 Charlier-Meixner.

For the Charlier-Meixner expansion

J
Cf(x) =Y cjn M (x),
n=0

one finds from Eq. (6.15) that

L .7 _\j—n n— j y Y+ 1N [
C]n—<n>( a) 2F0< B 70{(1—!1,)) (746)
7.2.10 Meixner-Kravchuk.
In the Meixner-Kravchuk case,
J
MM (z) =" cjn KB (2, N), j<N
n=0

we find _
. j—n n—',n—N
on= (7)ot (75) F( ne

7.2.11 Kravchuk-Meixner.

M) . (7.47)
W

For the Kravchuk-Meixner connection problem,

J

KP(z,N) = cjn M (z), j<N
n=0
we have
(7 Ry A n—j,n+a p
7.2.12 Kravchuk-Charlier.
For the Kravchuk-Charlier connection problem,
J
KP(z,N) =Y ¢jnCli(x),  j<N,
n=0
we have
J : i n—j f
Cjn = < n ) (N+1=73)j-n(=p)™" 1F1( n—N ‘ B 5)' (7.49)

7.2.13 Charlier-Kravchuk.

For the Charlier-Kravchuk problem,

J
C]M(I):chan(IaN)a ]SNa
n=0

qn=<i)cwvnzm<"‘j’”‘N‘—§> (7.50)

we have
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7.2.14 Hahn-Hahn

For the Hahn-Hahn problem, we use Eq. (6.20). A straightforward study of the problem
J
WM (@, M) = cjn hi? (2, N), j <min{N —1,M —1},
n=0
allows us to find
o < j > (I+n—M)j n(l+n+p)n
"o \n (L+n+j+7+ )jn

(7.51)
x F n_ja1+n_Nan+/B+1al+j+n+7+M
43 l4n—M,n+p+1,2n+a+B+2

1).

oo (Y Akn=N)ja(l4ntp)jn o n—j,n+p+1l, 1+j+n+y+p
m=\n +n+j+y+m)jm = ° n+pu+1,2n+a+p+2

In the particular case N = M (7.51) reduces to

1>.

7.2.15 Hahn-Charlier
For the Hahn-Charlier problem,

WP, N) =S e Ca(e),  j<M-1,
n=0
we find that
(i \A+n-=N)jn(+n+8)jn n—j,l+j+n+a+p |
c”’_<n> Gintitatf; . 22\ 1¥n-Nn+g+l | ) (7.52)

7.2.16 Charlier-Hahn
For the Charlier-Hahn problem,

J

CH(x) = cjn hyP(z,N), j<N-1,
n=0
we find that
(7 _N\j-n n—j,1+n-N,n+8+1| 1
“n <n>( g 3Fl< 2+ a+ f+ 2 A (7.53)
7.2.17 Hahn-Meixner
For the Hahn-Meixner problem,
P (z, N) = Zc]nM%“ j<N—1,
we find that
c.:<j> (Ltn—N)ju(t+ntpmjn
SN (L+n+j+75+n)jn
(7.54)

« .F n—j,a+pB+j+n+1,v+n
32 l+n—N,n+8+1

_H
p—1)
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7.2.18 Meixner-Hahn

In the Meixner-Hahn case,

M’”L ZCJ" a:N J<N-—1,
we find that
. ji—n
(i I . n—j,1+n-N,n+8+1 |p—1
q”_<”> Qﬁj> (7+m”“3< a+B+2n+2,v+n p (7.55)

7.2.19 Hahn-Kravchuk
For the Hahn-Kravchuk problem,
j

he? (z, N) Zc]n j <min{M — 1, N},

we find that

o ( j > (Ltn—N)jn(tntpwin
" (L+n+j+v+p)jn
(7.56)

« .F n—j,a+pB+j+n+1l,n—-M
32 l+n—N,n+8+1 '

7.2.20 Kravchuk-Hahn
In the Kravchuk-Hahn case,

prM chn bz, N), J <min{N — 1, M},

we find that

a+p+2n+2,n—M

] i n—j3,1+4n—-—N,n+p8+1
Cijn = ( i) I "(n—M)j_n3F2( J p ’

1). (7.57)

7.2.21 Some linearization formulas.

Here we apply Theorem 6.3 when rp, is the product of two Stirling polynomials. More concretely,
we will solve the linearization of a product of two Stirling polynomials 2™zl in terms of the

Charlier polynomials
m—+j

= mjnClz), (7.58)
n=0

In fact, the aforesaid theorem gives

m P j! p—n
I . — X - X
e (p—ﬂ><n>(p—m)!”

(7.59)
—m—j, p+1, 1
3F3< p—m—j, p

p—j+l,p—m+1,p—n+1

)
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where p = max(n,m, j).

Next, we apply Th. 6.4 to find the solution of the following linearization problem

m—+j
2MCY(2) = emjnCh(z), (7.60)
n=0

obtaining

min= EJ: ( i ) (ka ) < p ) ! (aﬁj:ﬁp—nx

F p—m—%k p+1,1
A p—k+lp—-m+1lp-—n+1

(7.61)

_//’>7 p= max(n,m, k)

This result can be alternatively found by means of Eqs. (7.58) and (7.59) together with Eqs. (3.53)
and the definition z™ = z(z —1)---(z — n + 1) = (=1)"(—x),. Notice the finiteness of the k-
summation and the terminating character of the involved hypergeometric function 3F';.

Expressions similar to Eq. (7.60) referred to the rest of classical discrete hypergeometric poly-

nomials with the non-orthogonal polynomials z[™ and (z),, may be equally found.

Conclusions

To conclude this work let us said that all the results here are valid for classical discrete polynomials
since they are polynomials of hypergeometric type in the linear lattice z(s). In such away, we can
recover the results given in [9, 24, 33].
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