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Abstract

We give an unified approach to the Krall-type polynomials orthogonal with respect
to a positive measure consisting of an absolutely continuous one “perturbed” by the
addition of one or more delta Dirac functions. Some examples studied by different
authors are considered from an unique point of view. Also some properties of the Krall
polynomials are studied. The three-term recurrence relation is calculated explicitly, as
well as some asymptotic formulas. With special emphasis will be considered the second
order differential equations that such polynomials satisfy which allows us to obtain
the central moments and the WKB approximation of the distribution of zeros. Some
examples coming from quadratic transformation polynomial mappings and tridiagonal
periodic matrices are also studied.

1 Introduction.

In this work we present a survey and some new results relative to the Krall type orthogonal
polynomials, i.e., polynomials with are orthogonal with respect to an absolutely continuous
measure “perturbed” by the addition of one or more delta Dirac functions. These polynomials
were firstly studied in 1940 by H. L. Krall [29]. More exactly H. L. Krall in his 1940°‘s work
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has obtained three new classes of polynomials orthogonal with respect to measures which
are not absolutely continuous with respect to the Lebesgue measure. In fact, his study is
related to an extension of the very well known characterization of classical orthogonal poly-
nomials by S. Bochner. This kind of measures was not considered in [39]. Moreover, in his
paper H. L. Krall obtain that these three new families of orthogonal polynomials satisfy a
fourth order differential equation with polynomial coefficients. The corresponding measures
are given in table 1. A different approach to this subject was presented in [28].

Table 1: The classical Krall polynomials [28], [29]

{P.} measure du supp(pt)

Laguerre-type e~ de+ Mé(x), M >0 [0, 00)

Sz —1)  8(z+1)

Legendre-type e +

5 TR a>0 | [-1,1]
Jacobi-type (1 =) doe+ Mé(x), M>0a>-1 [0, 1]

The analysis of properties of polynomials orthogonal with respect to a perturbation of a
measure via the addition of mass points was introduced by P.Nevai [35]. There the asymp-
totic properties of the new polynomials have been considered. In particular, he proved the
dependence of such properties in terms of the location of the mass points with respect to
the support of the measure. Particular emphasis was given to measures supported in [—1, 1]
and satisfying some extra conditions in terms of the parameters of the three-term recurrence
relation that the corresponding sequence of orthogonal polynomials satisfies.

The analysis of algebraic properties for such polynomials attracted the interest of several
researchers. A general analysis when a modification of a linear functional in the linear space
of polynomials with real coefficients via the addition of one delta Dirac measure was started
by Chihara [13] in the positive definite case and Marcellan and Maroni [31] for quasi-definite
linear functionals. From the point of view of differential equations see [34]. For two point
masses there exist very few examples in the literature (see [27], [15], [25] and [30]). In this
case the difficulties increase as shows [16]. Spectral properties of the classical Krall polyno-
mials [28], [29] were considered in [11].

A special emphasis was given to the modifications of classical linear functionals (Hermite,
Laguerre, Jacobi and Bessel) in the framework of the so-called semiclassical orthogonal
polynomials. For example in [27] the Jacobi case with two masses at points @ = 1 was
considered. The hypergeometric representation of the resulting polynomials as well as the
existence of a second order differential equation that such polynomials satisfy have been
established. Also the particular cases of the Krall polynomials [28], [29] have been obtained
from this general case as special cases or limit cases. In [21], [23] (see also [25]) the Laguerre
case was considered in details. In particular an infinite order differential equation for these
polynomials as well as their representation as hypergeometric series have been found. The



case of modification of a classical symmetric functional (Hermite and Gegenbauer function-
als) was considered in [6].

The modification of classical functionals have been considered also for the discrete orthogo-
nal polynomials. In this direction Bavinck and van Haeringen [9] obtained an infinite order
difference equation for generalized Meixner polynomials, i.e.; polynomials orthogonal with
respect to the modification of the Meixner weight with a point mass at z = 0. The same
was found for generalized Charlier polynomials by Bavinck and Koekoek [10]. In a series of
papers by Alvarez-Nodarse et. al [2]-[4] the authors have obtained the representation as hy-
pergeometric functions for generalized Meixner, Charlier, Kravchuk and Hahn polynomials
as well as the corresponding second order difference equation that such polynomials satisfy.
The connection of all these discrete polynomials with the Jacobi [27] and Laguerre [21] type
where studied in details in [5]. In particular, in [5] they proved that the Jacobi-Koornwinder
polynomials [27] are a limit case of the generalized Hahn as well as the Laguerre-Koekoek
[21], [23] are of the Meixner ones.

The aim of the present contribution is to give an unified approach to this subject including
the spectral properties by means of the central moments of the polynomials [12] and the
WKB or semiclassical approximation to the density of the distribution of zeros [8], [42], [43]
and some asymptotic formulas for the polynomials. Also a new interpretation of the Krall
polynomials in terms of special Jacobi matrices will be given.

The plan of the paper is the following. In Section 2 we give a general theory which allows
us to obtain some general formulas for the Krall-type polynomials. From these formulas we
obtain all the explicit formulas for the four families under consideration, i.e., the Jacobi-
Koornwinder [27], the Laguerre-Koekoek [21], [23], and the Hermite-Krall and Gegenbauer-
Krall [6]. Also a general algorithm is given to generate the second order differential equations
that such polynomials satisfy.

In Section 3 we study the spectral properties of the Jacobi-Koornwinder [27], Laguerre-
Koekoek [21],[23], Hermite-Krall [6] and Gegenbauer-Krall [6] polynomials by means of its
central moments and the WKB or semiclassical approximation to the density of the distri-
bution of zeros. Some particular cases are also included.

Finally, in Section 4 we consider some special cases of Krall-type polynomials obtained from
the analysis of certain types of Jacobi matrices and quadratic transformation polynomial
mappings.

2 The definition and the representation.

Let {P,} be a sequence of monic polynomials orthogonal with respect to a linear functional

L on the linear space of polynomials IP with real coefficients defined as (a, b can be Foo,
respectively)

b
<Lp> = [ Py, pa) ey pla)>0reelatl ()
Through the paper IP will denote the linear space of polynomials with real coefficients.

Let us consider a new sequence {]Sn} orthogonal with respect to a linear functional / de-
fined on IP obtained from the above functional £ by adding delta Dirac masses at points



L1,Z2,..,Lm, 1.€.,

<UP> =<L,P>+> AP(x;), x€R,  A>0. (2)

i=1

We will determine the monic polynomials {]Sn} which are orthogonal with respect to the
functional & and we will prove that they exist for all positive A;. To obtain this, we can
write the Fourier expansion of P,(z) in terms of the polynomials P, ()

n—1

Po(x) = Pax) + Y an ik Pr(2). (3)

k=0

In order to find the unknown coefficients a,, ;, we will use the orthogonality of the polynomials
P, (z) with respect to U, i.e.,

0=<U,Py(x)Pp(x) >=< L, Pp(2)Pe(x) > + Y APulxi)Pilas), Vk < n
i=1
we find ~
Un k= _;AiTa (4)

Ba(e) = Pale) = Y Aiba(e) Y T W%Pk(x)

R (5)
= Py(z)— ZAipn(xi)I(ern_l(x, z;).

=1
In order to obtain the unknown values ]Sn(xz) for each i = 1,2,...,m, we evaluate (5) in
z;, 7 =1,2,...,m. In this way, the obtained linear system of equations
ﬁn(xj)+2Ai]5n(xi)l(ern_1(xj,xi):Pn(xj), j=12,..m, (6)
i=1

has an unique solution if and only if the determinant

1+ A1 Ker,_1(z1,21) AgKer,_1(vy1,w2) AmKery_1(z1,Tm)
AiKer,_1(xg,01) 1+ AgKer,_1(w2,22) - AmKery_1(T2,Tm)
: : . : (7)
A1 Kern_1(€m,71) AoKer, 1 (¢m,v2) - 14+ ApKer, 1(Tm, Tm)

does not vanish for all n € IN. This is also a necessary and sufficient condition for the
existence of the nth degree polynomial P,(z) for all n € IN.

In this work we will consider the particular cases when we add one or two delta Dirac masses.
Let us consider these cases with more details.



2.1 The Case of one point mass at v = z;.

In this case from (5)-(6) we get

ﬁn(gj) = Py(2) — APy(x1)Kerp_1(z, x1),

Po(y) = ——n) - (8)
1+43° 7(13]“(;1))

=0

and the condition (7) becomes
n—1
(Pr(x1))*
1pay PR o,
k=0

which is always true for every n € N since A > 0.

2.2 The Case of two point masses at + = x; and x,.

Again we start from (5)-(6). Then,
]Sn(x) = P,(x) — Allsn(xl)l(ern_l(x, z1) — Azlsn(xz)l(ern_l(x, z3),
Pn(l‘l) Az[(ern_l(l‘l,l‘z)

~ Pn(l‘z) 1+A2[(6Tn_1(l‘2,l‘2)

Pn($1) - 1+A1[(6Tn_1(l‘1,l‘1) Az[(ern_l(l‘l,l‘z)
AlKern_l(xz,xl) 1+A2[(6Tn_1(l‘2,l‘2) (9)
1+A1[(6Tn_1(l‘1,l‘1) Pn(l‘l)
~ A1 Kerp_1(xo,x Pz
Pn(xz) — 1 1( 2 1) ( 2)

1+A1[(6Tn_1(l‘1,l‘1) Az[(ern_l(l‘l,l‘z)

AlKern_l(xz,xl) 1+A2[(6Tn_1(l‘2,l‘2)
and (7) becomes

1+A1[(6Tn_1(l‘1,l‘1) Az[(ern_l(l‘l,l‘z)

£0.
AlKern_l(xz,xl) 1+A2[(6Tn_1(l‘2,l‘2)

Moreover, if A; and As are nonnegative constants then the above determinant is always
positive. To prove this it is sufficient to expand the determinant and use the Cauchy-Schwarz

inequality (3~ apbg)? < > ai > bi.
3 Applications to classical polynomials.
In the previous section we consider the polynomials orthogonal with respect to a very general

weight function p(x) € Clapy, p(x) > 0, « € [a,b]. In this section we will consider some par-
ticular cases when p(z) is some of the classical weight functions, i.e., the Jacobi, Laguerre,



Hermite or Gegenbauer weight functions, respectively. Moreover, since in expressions (8)
and (9) the kernel polynomials Ker,_1(x, #;) appear we will consider the case when we add
some delta Dirac masses at the origin # = 0 or at the ends of the interval of orthogonality
of the classical polynomials. The last consideration allows us to obtain explicit formulas for
the kernel polynomials in terms of the classical polynomials and their derivatives [5], [6].

In this way, if we consider the Jacobi case and add two masses at # = &1 we obtain the well-
known Jacobi-Koornwinder polynomials [27] and for special values of the masses A;, A,
the classical Krall polynomials [28], [29]. For Laguerre case when ¢ = 0 we obtain the
Laguerre-Koekoek polynomials [21], [23]. Finally, for Hermite and Gegenbauer cases when
£ = 0 (the symmetric case) we obtained the Hermite-Krall and Gegenbauer-Krall polyno-
mials introduced in [6].

The main data of the classical polynomials can be found in [17], [36], [39], for the monic
polynomials see, for instance, [5], [6].

3.1 The Jacobi-Koornwinder polynomials.

The Jacobi-Koornwinder orthogonal polynomials were introduced by T.H. Koornwinder [27].
They can be obtained from the generalized Hahn polynomials introduced in [4] as a limit
case [b] and correspond to the case of adding two delta Dirac masses at the ends of the
interval of orthogonality of the classical Jacobi polynomials.

Definition 1 The Jacobi- Koornwinder orthogonal polynomials P2:%4B(z) are the polyno-
mials orthogonal with respect to a linear functionalU on P defined as follows (A, B >0, a >

<UP> :/_12a+ﬁ+f(r‘zjf$§()ﬁ+1)(1_x)au+x)ﬁp(x)dx+AP(1)+BP(_1). (10)

Using the expression (9) and the properties of classical monic Jacobi Polynomials P%?(z)
we obtain the following representation of P2#4.B(z) in terms of the classical Jacobi poly-
nomials and their derivatives [5], [27]

d d
OB (@) = PEA(w) 4Ny C P (w) - T PRI @), (1)
= de A dr
where XZ{Q’ﬁ = —AP>PAB(_1)n2f and X%’i{a = —BPBAS ()b pofAB(_1) and
PaBAB(1) are given by
PXP(=1)  BRery®(~1,1)

PXP(1) 14 BKer?%%(1,1)

pﬁhﬁ,A,B 1) =
- 1+ AKer?®%(=1,-1)  BKer?™f(-1,1)

AKer?®P(=1,1) 14 BKer?%%(1,1)

and
PEOAB(1) = (1) Pl B, (13)

The kernel polynomials Ker!  (z,4+1) are given by



PB+n+ Dl (a+B+n+ DIl (a+1)
20=1n—=DIT B+ 2)T(a+n)T(a+3+2)

Aerj’a’ﬁ( 1,-1) =

Ker®P(1,1) = Ker?P%(=1,-1), (14)

(-D)" '+ B+n+1)

Jﬂﬁ _
Ker 27 (—1,1) = 3 =1(n = 1)1 ,

and n%?, n* denote the quantities

ws (D)@ o+ T (o + 1)

(15)
(="' 2n+ o+ B)T(B+1)
22~ 1pIl (B + n)D(a+ DI (e + B+ 2)’

e =
respectively.

Also the following equivalent representation, similar to the representation obtained in [27]
for the monic generalized polynomials, is valid

pﬁv,ﬁ,AyB(g;) =(1- nJZ:%’ﬁ - nngi’a)P,?’ﬁ(l‘)+

(16)

d
_Pr?ﬁ(l‘)’

LS (= 1)+ T (L4 ) -

where J7%0 = —APXAAB(_)pof b = _gpB.ALe ()78 and 5¢F ) 70 denote
the quanfities 7
0B (=D)"T2n+a+ 8+ ) (a+ 1)
T IMa+n+ DH(a+ 3+ 2)

(17)
~@a__( DPT2n+a+ 6+ DI+ 1)
T T T (B n+ Do+ 8 +2)
From the above formula (16) we can obtain a lot of interesting properties, in particular

the hypergeometric representation of the new polynomials [27], the second order differential
equation [27], [20], [5] (see Appendix I) and the three-term recurrence relation

x POPAB(g) = P;v_i_ﬁl,A,B(x) + B, POPAB (1) 4, PP B,A, B( ), n>0

(18)
pPAB 1y =0, and pePAB Ly =1,

which is a consequence of the orthogonality of the polynomials (10). The coefficients 3, can
be obtained equating the coefficients of the z” power in (18). Then,

§ — o

bn = 2n+a+p)2n+2+a+05)

NeNeY n+1l,a, n+1,8,a
(JA, JB[j ) — (”‘1'1)(‘],4:'1_3 ﬁ_JB,txﬁ )-

To obtain 7, we notice that P®#4-8(1) £ 0 for all n > 0. Then, from (18)

_ gy BT P
—Mn paBAB ~ Sa,8,AB :
() PRt




a,B,A,B
P p

Also from (16) it is possible to obtain the ratio asymptotics W Firstly, we use the
n

asymptotic formula for the T'(z) function [1] to obtain

e g+1 gBa _of 1

A.B n? npga ™ T2

«,8,A,B

Then, the formulas for the ratio L follow from the classical asymptotic formulas

for the ratio %% in the interval 8 € [e,7 — €], 0 < ¢ << 1 or locally uniformly in
IR\[—1, 1]. They are obtained as a simple consequence of the Darboux formulain 8 € [¢, 7—¢],
0 < e << 1 (see [39], Theorem 8.21.8, page 196) or the the Darboux formula in R\[—1, 1]

(see [39], Theorem 8.21.7, page 196), respectively. From the above considerations we find

o, B
n

Pf’ﬁ(cos ) B n

PP A B (cos 0) Lot 842 N ((cosé + D(a+ 1)+ (cosf — 1)(F + 1)) "

n

<2 an (0t 3o+ 5+ 1)0 — o+ 5] + o L),

sin

and

PoAB(s) a+ﬁ+2+2((Z+1)(a+1)+(2—1)(5+1))+ (d
PP (2) n n

ol =
22 -1 71)’
valid in 0 € [e,7 — €], 0 < ¢ << 1 or the interval IR\[—1, 1], respectively. The last formula
holds uniformly in the exterior of an arbitrary closed curve which enclose the segment [—1, 1],
moreover, if z € R, z > 1, the right side expression is a real function of z.

3.2 The Laguerre-Koekoek polynomials.

The Laguerre-Koekoek orthogonal polynomials were introduced in [27] as a limit case of
the Jacobi-Koornwinder polynomials and studied with more details in several works [21],
[23], [25]. They also can be obtained as a limit case of the generalized Meixner polynomials
introduced in [9], [2] using an appropiate limit transition [5].

Definition 2 The Laguerre-Koekoek orthogonal polynomials L4 (x) are the polynomials
orthogonal with respect to a linear functional U on IP defined as follows

e 1
P = ———a% " P(x)d AP A> —1. 1
<U,P> /0 F(a+1)x e~ "P(z)dx + AP(0), >0, o> (19)

Using the algorithm described before (see formula (8)) we find for the Laguerre-Koekoek
polynomials the following representation formula (see [5], [25] for more details)

d A 1),
L3A(e) = [8(0) + Ta-eL2(),  Typ= — et D
it

d nt (14 alt2hn )

(20)

From (20) we can obtain a lot of properties, for example, the hypergeometric representation
of the new polynomials [25], the second order differential equation [25] (see Appendix T) and
the three-term recurrence relation



r LoA(z) = Lfffl(x) + BuLOA(x) + 'yanff‘l(x), n>0

(21)
LC_Y’lA(a:) =0, and Lg’A(a:) =1,

which is a consequence of the orthogonality of the polynomials (19). The coefficients 8, and
v are given by formulas (LS’A(O) # 0 for all n > 0)

LeA0) _ Ly
Bo=2n+a+ 14T, —Tnpi, n = Bn—2 e ol
TR o)

n—1 n—1

LaA

)

To obtain the ratio asymptotics we use the asymptotic formula for the T'(z) function

[1] to obtain

n

1 LO{ /

and then from (20) and by using the Perron Formula for the ratio — Ln)'(z)
vno Ly(z)

Laguerre polynomials, z € CT\[0, c0), (see [40], Eq. (4.2.6) page 133 or [39], Theorem 8.22.3)

we find

of the classical

ngg):“f% 1—4\/%(2(1—1—1—,2)]-1—0(%).

3.3 The Hermite-Krall polynomials.

The Hermite-Krall polynomials were introduced in [6]. They can be obtained as a quadratic
transformation of the Laguerre-Koekoek polynomials [6].

Definition 3 The generalized monic Hermite polynomials HA(x) are the polynomials or-
thogonal with respect to the linear functional U on IP defined as follows

<UP> = / e P(a)da + AP(0), A >0, (22)
Again, from formula (8) after some straightforward calculations we obtain that the Hermite-
Krall polynomials H2(z) admit the following representations in terms of the classical poly-
nomials

Hi_y(2) = Hapmoo (2), n=2m-1 m=12,..,
d (23)
2eHE () = 22 Hom(2) + Bmd—Hzm(x), n=2m, m=0,1,2, ..
X
A L(m+3)
Bm = 2 (m+3) Trm!
(1+ 455 '

Notice that the odd polynomials coincide with the classical ones. They are quadratic trans-
formations of the Laguerre-Koekoek polynomials [6]

H _(x)==xL2_ (2%, n=2m-1 m=123,..
(24)
1 1 1
HA (0) = L (22) = L (22) + B s Lin? (82),  n=2m, m=0,1,2, ...



Notice that from the above formula the connection with the Laguerre-Koekoek polynomials
follows. Again from the above representation we can obtain the hypergeometric represen-
tation [6], the second order differential equation [6] (see Appendix I) and the three-term
recurrence relation

pHH () = Hily (2) + B H 3 (3) + 7 Py (2), nz0
(25)
HA () =0 and Hi(z)=1.

which is a consequence of the orthogonality. The coefficient 3, 1s always equal to zero since
the functional ¢/ is symmetric. For the coefficients 7, we have [6]

Yom = m(1 + Bp), n = 2m, m=20,1,2, ..
24 D(m=%)
_ o OIS g a1, )
Y2m—-1 = N n=zmn 3 m=1,29,..
2 1_|_ Mr(m‘l'?)
7 I'(m)
For the asymptotic formula we have
1
By o~ —.
2m

Then, for m large enough

which is a consequence of (24) and the ratio asymptotics of the Laguerre-Koekoek polyno-
mials.

3.4 The Gegenbauer-Krall polynomials.

The Gegenbauer-Krall polynomials were introduced in [6]. They can be obtained as a
quadratic transformation of the Jacobi-Koornwinder polynomials [6].

Definition 4 The generalized monic Gegenbauer polynomials GQ’A(J:) are the polynomials
orthogonal with respect to the linear functional U on P defined as follows

1
<u,pP> :/ (1 - #2)*= 2 P(x)dx + AP(0), A>0, A>—1. (28)
-1

From formula (8) after some straightforward calculations we obtain that the generalized
Gegenbauer polynomials G4 (z) have the following representation in terms of the classical
ones

2 Gty (8) = 27 G,y (2) n=2m-1 m=0,1,2,..
QxG;‘;f(x) =2x(1+ mWn’;‘)G%‘m(l‘) + Wn‘;‘(l — l‘z)%G%‘m(l‘) n=2m, m=0,1,2,..
(29)

WA A T(m+ HT'(m+ A)

m (4 5)0m+A) N am!l(m+ A+ 1)
(1 + Aﬂ'(m—l)!F(m+)\—%)) ’

10



Notice that, like in the previous case, the odd polynomials coincide with the classical ones.
They are a quadratic transformation of the Jacobi-Koornwinder polynomials [6]

_1 152
G;\T’f(l‘):Q—mPﬂé 7 732 A,O(sz_l)’ m=20,1,2,... (30)
_11
Gyl (0) =27ma Py P2 (202 = 1), m=0,1,2,...

The above formula represents the connection with the Jacobi-Koornwinder polynomials.
Again from the above representations we can obtain the hypergeometric representation [6],
the second order differential equation (see Appendix IT), and the three-term recurrence rela-
tion
XA XA
eGy () = G (2) + BuGR(2) + 1 Gl (2),
(31)
Gi’f‘(l‘) =0 and GS"A(J:) =1

where the coefficients 8, = 0 and the =, are given by

m(2m 42X — 1)
m = 1+wA A =2 =0,1,2, ...
72 2(2m—|—/\)(2m—|—/\—1)[ FWalm+ )], w=2m m=01,2,
Azr(m_%)r(m+x_1) (32)
_ (@m—1)(mAA-1)  m(m-T(mir—5) — 9 _
T2m-1 = T a@mIA-1) zr(m+%)r(m+x)2 ’ n=2m-1, m=123,..

144 T
® (m—1)IT(m+A— %)

Finally, for the asymptotic formulas we have

WANL

T 2m?T
Then, we obtain for the generalized Gegenbauer polynomials the following asymptotic for-

mula valid for 6 € [¢, 5 —c]U[§ +e,m—¢] (0<e<< 1)

G%‘\T’f(cos ) S z (1 sin @ {sin(?mb’ + A0 — LA7) }) ‘o (i) ’ (33)
G5, (cos ) m \4  cos@ | cos(2ml + A0 — LAx) m

which is a simple consequence of the Darboux formulain ¢ € [e, 7 —¢], 0 < & << 1 (see [39],
Theorem 8.21.8, page 196).

s

For & = cos 2

= 0 we can use the expression

G2 (0)

G (0= —— =2 ) o
2m
1+A2[TG ]
k=0 n

where d< is the norm of the Gegenbauer polynomials, which yields

G0 o).
G3,,(0) ~ 24m m?

For the ratio asymptotics off the interval of orthogonality we find
G (2) 2 (1 1 1

m -1 I 1 — L 4

Ghaz)  m\a 2T\ ) (34)

11




which holds uniformly in the exterior of an arbitrary closed curve which enclose the segment
[—1,1]. The last expression is a consequence of the Darboux formula in IR\[—1, 1] (see [39],

Theorem 8.21.7, page 196).

4 The Distribution of zeros: the moments i, and the
WKB density.

In this section we will study the distribution of zeros of the Jacobi-Koornwinder, Laguerre-
Koekoek, Hermite-Krall and Gegenbauer-Krall polynomials. We will use a general method
presented in [12] for the moments of low order and the WKB approximation [8], [42], [43]
in order to obtain an approximation to the density of the distribution of zeros.

First of all we point out that, since our polynomials are orthogonal with respect to a positive
definite functional all their zeros are real, simple and located in the interior of the interval
of orthogonality. This is a necessary condition in order to apply the next algorithms.

4.1 The moments of the distribution of zeros.

The method presented in [12] allows us to compute the moments g, of the distribution of
zeros pn(z) around the origin, i.e.,

ﬂr:%yr:%Zx;,ia pn:%Z(S(l‘—l‘n,i»
i=1

i=1

Buendia, Dehesa and Gélvez [12] have obtained a general formula to find these quantities (see
[12], Section II, Eq.(11) and (13), page 226). We will apply these two formulas to obtain the
general expression for the moments p; and ps, but firstly, let us to introduce some notations.

We will rewrite the SODE that such polynomials satisfy

&n(x)%pn(x) + ?n(x)%pn(x) + (@) Pa() = 0

where now

o

Fo(r) =3 Fala) =Y afab, An(e) =3 alVak, (35)
k=0 k=0

k=0

and ca, 1, ¢ are the degrees of the polynomials ¢, (x), 7,(z) and /N\n(x), respectively. Here
the values a\) can be found from (54) in a straightforward way. Let & = 1 and ¢ =
max{ca —2,¢1 — 1,¢p}. Then from [12], (Section II, Eq.(11) and (13), page 226)

2
&=, =02 5 = (36)
and ,
: m (n—s+m)! (i)
-1 s—m A EEEE—— R
£ = — " . (37)

Z agil-)q
P (n—s—1)!



(=1

k
o Yi(=y1, —y2, —2ys, ..., —(k— 1)lky,) where YVj-symbols denote the well

known Bell polynomials in number theory [38].

In general &, =

Let us now to apply these general formulas to obtain the first two central moments p
and po of our polynomials. Equation (37) give the following values.

4.1.1 Jacobi-Koornwinder polynomials P45 (z).
n (—a + 084+ 2a JZ:%’ —-2p ngi’a +2 JZ:%’ n—2 ngi’a n)

b= a+pB4+2n

Then,
—a+ B+ 20y =28 I 200 =20 n
a+B+2n ’

For the moments of second order ps the expression can be found by straightforward but

p =

cumbersome calculation and we will not give explicitly. The asymptotic behavior of the
moment g 18
a—p

2

As particular cases we will consider the Legendre-Koornwinder polynomials P2:0:48(z)
and the Gegenbauer-Koornwinder polynomials G%4-8(z) = P»»45, TFor the first ones
PUOAB(2) we have

1
p1 o~ —I-O(g)

n,0,0 n,0,0
/’Ll:_‘] B +J VA

_ n,0,0 n,0,0 n,0,0 n,0,02 n,0,0

“2—2n_1(_1+2JA,B +2JB,A —|—n—2JAan—JAyB n—ZJBVA n+
7,0,0 771,0,0 n,0,02 n,0,02 2 n,0,0 1,00 2 n,0,02 2

20y Jga n—Jgu n+2Jyg  nt —adyy Jpt et 42050 nt ),

and for Gegenbauer-Koornwinder polynomials
n,v,v n,v,v
1 n,v,v n,v,v n,v,v n,v,v2
:m(_l—i_ZJA,B +2JB,A —I—n—ZJAyB n—JAyB n—
2 2
=2 RN 2 I JENY e — TR+ 2 VR0 — 4 T JENY R+
n;v,v2 2 ’ n,v:v2 ’ n,n,v Jn,uv,v ’ 77,,1/,1/27 ’
+2JB,A n +2JA,B nl/—4JAyB JB,A n1/+2JBVA nv).

Notice that in both cases if A = B, Jyg" =J%" = J5%" and then, py = 0.

2

4.1.2 Laguerre-Koekoek polynomials L4 (z).
I-n)(1l—-a+2T,—n)n(a+n)

&S=n(a—Ty+n), §a = 5
Then,
o =a—Ty+n,
Ho = —oz—i—ozz—QOan—n+3an—2fnn+Fn2n+2n2.

The asymptotic behavior of the moments are

p1 ~n+0(1) and gy ~ 2n% + O(n).

13



4.1.3 Hermite-Krall polynomials HZ(z).
elfn=2m m=0,1,2,... then

(1+2B,—-2m) m

€1:0, €2: 9 ’

and the moments are

(2m—1—2B,,)
5 .

H1 = Oa H2 =
elfn=2m—1,m=1,2, .. then, Hi _ (x)= Hopm_1()
& =0, &a = (1 —m) m,

and the moments are
/'leoa /’LZI(m_l)

The asymptotic behavior of these two moments in both cases is

w1 =0 and py ~ g—i—O(n).

4.1.4 Gegenbauer polynomials G}4(z).
elfn=2m m=0,1,2,... then

m (=14 2m+ Wy, —n? W, —2AW,,)

& =0, &= 2(=142m+A) (=1 +2mWy)

and the moments are

1—2m— Wy +4m? W, + 2AW,,
/'leoa H2 =
2(=142m+X) (=14 2mWy,)

elfn=2m—1, m=1,2, .., then, G;‘;f_l(x) = Gom-1A(%)

2m (2 — 2m)
gl—oa €2_4(—2—|—2m—|—/\)’
and the moments are
2m—1
H1 = Oa

M= S Gm—2+2)

The asymptotic behavior of these two moments in both cases is
1 -1
p1:0and/12~§—|—0(n ).

(="

k! yk(_yla_yZa_QyE}a"'a_(k_ 1)'yk‘) pro-
vide us a general method to obtain all the moments p, = %yr, but it is hightly non-linear
and cumbersome. This is a reason why it is useful only for the moments of low order.

Notice that equation (37) and relation &, =

14



4.2 The WKB density of the distribution of zeros.

Next, we will analyze the so-called semiclassical or WKB approximation of the distribution
of zeros (see [8],[42], [43] and references contained therein). Denoting the zeros of P,(x) by
{&n 17—, we can define its distribution function as

pule) = = 328 — ) (3)

We will follow the method presented in [42] in order to obtain the WKB density of zeros,
which is an approximate expression for the density of zeros of solutions of any second order
linear differential equation with polynomial coefficients

as(z)y” + ar(x)y + ao(x)y =0 (39)
The main result 1s established in the following

Theorem 1 Let S(x) and e(x) be the functions

S(z) = é{?azﬁao — a’l) + a1(2a/2 —a1)}, (40)
_ 1 5[Sl(x)]2 () b = P(l‘,n)
“”‘4@@W{4wwn S<>}‘Q@my (4D

where P(xz,n) and Q(x,n) are polynomials in x as well as in n. If the condition e(x) << 1
holds, then, the semiclassical or WKB density of zeros of the solutions of (39) is given by

1
pWKB(l‘) = ;\/S(l‘), z el CR, (42)
in every interval I where the function S(x) is positive.

The proof of this Theorem can be found in [8], [42].

Now we can apply this result to our differential equation (53)-(54). Using the coefficients of
the equation (53)-(54) we obtain that in all cases under consideration we have for sufficiently
large n, €(x) ~ n=t. Then, from the above Theorem the corresponding WKB density of
zeros of the polynomials ]Sn(x) follows. The computations are very long and cumbersome.
For this reason we write a little program using MATHEMATICA [41] and provide here only

some special cases and some graphics representation for the pwxp(x) function.

4.2.1 Jacobi-Koornwinder polynomials P45 (z).

In this case the explicit expression of py s () is very large and cumbersome, so we will provide
some particular cases. If we take the limit A — 0, B — 0 in the obtained expression we
recover the classical expression [42], [43]

pwkbclas(x):
R(x):4—1—2&—&2—1—26—1—206—62—|—4m—|—4am—|—46m—|—4m2—2&275—1—26275—

2 2 2 2 2 2. 2 2 2 2 2.2
2oz’ —a =20z —2afr*—p7x  —4dmaz* —damz® —4Fmz —4m* x”,

For the particular case &« = 3 = 0, i.e., Legendre-Koornwinder polynomials we find

15



a=0p=0, VI +m+m?—maz?—m?z?)
Pukb (x) = T (=27 .
1 a=pp=
Again, taking the limit lim —pi;,?’ﬁ_o(x), we find the known expression for the classical
n—oo N

Legendre polynomials [42]

VKB Lensi ty

Cl assical Legendre Legendr e- Koor nwi nder

100000
80000

100000
80000

/

-1 -0.5
d assi cal
100000
80000

0.5

Gegengauer

-1 -0.5

Gegenbauer -

100000
80000

0.5
Koor nwi nder

1

Figure 1: WKB density of zeros of P45 28(z).

In Figure 1 we represent the WKB density of zeros for the Legendre-Koornwinder and
Gegenbauer-Koornwinder (with o = # = 5) polynomials. We have plotted the Density
function for different values of n (from top to bottom) n = 10°% 105 10%. Notice that the

) : : o, +1 B, 1
Yalue of the mass doesn’t play a crucial role, since for n >> 1 JZ,% ~ ﬁT, ngAa ~ %
independently of the values of the masses A and B.

bl

4.2.2 Laguerre-Koekoek polynomials L4 (z).

Again the explicit expression of pyps(x) is very large and cumbersome. Firstly we can
convince ourselves that using (42) and taking the limit when 4 — 0 we find

\/(1—a2+2x+2ax+4mx—x2)

pwkbclas(x) = . .

which coincides with the classical expression [42], [43]. If we now consider the special case
a = 0 we obtain

a=0

(2) R(x)
z) = ,
Puks 27 x? (—Fn—l—Fnzn—l—x—l—an)

where

z? (2Fn—2Fn2n—5x—4fnx—Fn2nx—x2—an2 X
><(2Fn—2Fn2n—x—2fnx+Fn2nx+x2—|—an2)—|—

+2 22 (—Fn+Fn2n+x+an)><

X (2Fn—2Fn2n—2x—4an—4fnnx+2fn2n2x+3x2+
+3an2+2nx2+2fnnx2).

16
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100
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Figure 2: WKB density of zeros of L04(x).

In Figure 2 we represent the WKB density of zeros for the Laguerre-Koekoek polynomials
with @ = 0. We have plotted the density function for different values of n (from top to
bottom) n = 10°,5 x 10%,10%,10%. Notice that the value of the mass doesn’t play a crucial
role, since for n >> 1 ', ~ %Ll)’ independently of A .

4.2.3 Hermite-Krall polynomials H4 (z).

We will analyze only the polynomials of even degree, i.e., pzm(x) In this case from (40)

and (42)

(2) R(x)

wkbelas (T ) = )

Pukbel (—Bm +2B2 m+22°+ 2 B, 22)

R(z) = —6Bm —3B2 +24B% m+8B3 m—32B3 m?—4B m?+ 16 B}, m>—

—8 B, x2—9Bfn x2—323mmx2——32372,17711‘2—1—43217%1‘2—1—
+32B2 m? 2 +32B3 m?x? —4 Bt m? 2 + 42* + 12 B, 2* — 8 B2, 2%+
+16mat + 32 By, mat +8 B2, ma* —8 B3 ma* —42% -8 B,,, ° — 4 B2 2°.

If we take the limit A — 0, again we recover the classical expression [42], [43]

V1+4m— x?

T

Pl\ukb(l’) =

VKB Density
O assical Hernite Herm te-Kral |

\

! I \
-200-100 100 200 -200-100 100 200

Figure 3: WKB density of zeros of the HA(x).

In Figure 3 we represent the WKB density of zeros for our generalized Hermite polynomials.
We have plotted the Density function for different values of n (from top to bottom) n =
2 x 10%, 1.5 x 10*,10%, 103, Notice that the value of the mass doesn’t play a crucial role,
since for n >> 1 B,, ~ =, independently of A .

2m’

4.2.4 Gegenbauer-Krall polynomials G;‘T’f(l‘)

We will analyze only the polynomials of even degree, 1.e., pzm(x) In this case the expression
is very large and we will provide only the limit case when A — 0 which agrees with the

17
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Figure 4: WKB density of zeros of the G 4(z).

classical expression [42], [43]

V24 16m2 +4X+16mA+ 22 —16m? 2? — 16 mAx® — 4 A2 22
- 27(1 — x?) '

Pi\;kb(f)

In Figure 4 we represent the WKB density of zeros for our generalized Gegenbauer poly-
nomials. Notice that the value of the mass doesn’t play a crucial role, since for n >> 1,
W ~ #, independently of A. We have plotted the Density function for different val-
ues of the degree of the polynomials (from top to bottom) n = 2 x 10%,1.5 x 10*,10*, 103
for two different cases: the generalized Legendre polynomials (A = 1) and the generalized

Gegenbauer with A = 5.

5 Other interesting examples.

In this section we will give some other examples of families of Krall-type orthogonal poly-
nomials, obtained using quadratic transformations of the variable of a given sequence of

orthogonal polynomials. These examples can be obtained as an application of the following
theorem [33].

Theorem 2 Let {P,},>0 be a monic orthogonal polynomial sequence (MOPS) with respect
to some uniquely determined distribution function o(x) and let [€,n] be the true interval of
orthogonalily of {Pn}n>0, with —co < & < np < +0o. Let a and X be fized real numbers,
T(z) = (x —a)(x —b) + ¢ a real polynomial of degree two and put A = (b —a)? — 4e. Let
{Qn}tn>0 be a sequence of polynomials such that

Q2(a) = A, Qanya(2) = (x — a)Pa(T(2))
foralln=20,1,2,.... Assume that one of the following conditions hold
(1) c<E+A
(7)) ¢ <&, —oo < lim MzAg/\ngM,
e P ZRAC)

where B = 400 if n = +oo and {P,E”}nzo denotes the sequence of the associated polynomaials
of the first kind [14] corresponding to {Pp}n>0. Then, {Qn}n>0 is @ MOPS with respect to

18



a positive definite linear functional if and only if
A<0, Qan(x)=Py(T(x))—
hold for allmn =0,1,2,... and

an(X,¢) = Po(c) — APV (c) .

In these conditions, {Qn }n>0 is orthogonal with respect to the uniquely determined distribu-
tion function &(x) defined as

A do(T(x))
e T

A A
M=po+ (o) 20, r=1/e+7, s=1n+T,

> do(t
F(z0) = / ta( ) 15 the Stieltjes functions associated to the distribution function o and
—z

jo = /_O:o dop(z).

5.1 Generalized Hermite polynomials with a mass at « = 0.

a+b
2

< |z —

do = Mé(x — a)

‘<5

where

Let {L2},>0 be the sequence of the monic classical Laguerre polynomials which are orthog-
onal with respect to the weight function w(x) = %",z € [0,00), « > —1. If &« > 0, it
follows from the last theorem [33] that, for each A such that —a < A < 0, the sequence of
monic polynomials defined by

Qn

Qany1(z) = ng(xz)’ Qan(z) = Lg(xz) - Lg—l(xz)’

Ap—1

where

an = L2(0) = A (L2 )™M (0), n=0,1,2,...,

n—1
and (L“_l)(l) denotes the associated polynomials of the first kind of the Laguerre polyno-
mials is orthogonal with respect to the measure

do(z) =T(a+1) (1 + i) So(z)dx — /\|x|2a_1e_x2dx, z € (—00,00).
o

Choosing A = —a we have that, up to a constant factor, do(z) = |x|2“e_x2dx, with g = a—%.

Hence {@y}n>0 is the sequence of the monic generalized Hermite polynomials @, = HT(L“),
n > —% (cf. [14], page 157). However, if we choose A such that —a < A < 0, then one
can see that there is always a mass point, located at z = 0. This example generalizes the
Hermite-Krall polynomials considered before.

19



5.2 A finite 2-periodic Jacobi matrix.
Let B, be a tridiagonal 2-Toeplitz matrix, which has the general form

ay bl 0 0 0
C1 as bz 0 0
0 Cy aj bl 0
Bn = 0 0 (&) as bz € C(n,n) (43)
0 0 0 C2 ay

where we assume that by, b3, ¢; and ¢y are positive numbers. This special matrix has been
studied in [19] and also in [32].

Since b; > 0 and ¢; > 0 for ¢ = 1,2 then there exists an OPS, {S,},>0 , such that B, is
the corresponding Jacobi matrix of order n. Let {@,},>0 be the corresponding monic OPS.
Then

an(l‘) = (b1b2)n52n(l‘) ) Q2n+1(l‘) = bl(blbz)n52n+1($)

Moreover, according to [32], {@n}n>0 can be obtained by a quadratic polynomial mapping
on a linear transformation of the monic Chebyshev polynomials of second kind {U,}. In
fact, putting

T(x)=(r —a1)(x —az), o=2vbibacica, [ =bics+ baca,
we have
Qany1(z) = (2 — ar)) P (T(2)),  Qun(z) = Rn(T(2)),

where
r—f

«

Pp(z) =™, ( ) ,  Rp(x) = Po(x) + bacaPy_1(®)
for all n = 0,1,2,.... Notice that P, i1s orthogonal with respect to the distribution function

x—f

op(x) = v ( ) . supp(op) = [F—a, B+ 0],

where opr is the distribution function of the Chebyshev polynomials [17], [39] so that

2
dop(x) = W\/az —(x—p)? do .
From [33] the Stieltjes function of {Qn }n>0 is

Fa(z) = 1 4 M 15 (7(2)) - Fp(0)], (44)

ay — z Z — aq

where Fp denotes the Stieltjes function associated with op, M = pg — b1c1 Fp(0) and pg is
the first moment of op. Clearly, pug = f;fj dop(xz) = 1. Furthermore, using the Stieltjes
function Fyr of the Chebyshev polynomials [40] (page 176)

ree) =100 (S2) = 22 (s p- VB a)

«

where the square root is such that |z — 3+ +/(z — 3)? — &?| > a whenever z ¢ [ —«, f+a].

Since 0 ¢ [f — a, 8+ «] for bieg # baca (this is no restriction, because the case bie; = bacy
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corresponds to constant values along the diagonal of the corresponding Jacobi matrix),
elementary computations give Fp(0) = min{bie1, baca}/bicibacs. Hence

M _ 1 _ min{blcl, szz} .
szz

It turns out from (44) that the Stieltjes function of {@y }n>0 reads as

Po(p=—24___L 1 [1 (T(2) = = VAT() = 57 = a2) + min{bre, bocs}|

a1 — 2z  absey z—ay |2

From this we find (see [33]) that {Qy}n>0 is orthogonal with respect to the distribution
function

dog(x) = Mé(x—a1)+ ﬁd@m@)
1

1
= M(S(l‘ — Cll) + 77\/4[)1[)26162 — (T(l‘) — b161 — b262)2 dx s

2w boyey |x — aq|

the support being the union of two intervals if M = 0 and the union of two intervals with a
singular point if M > 0 either
supp(og) = T~ supp(op)) if by < bacy
or
supp(og) = T~ supp(op))U{ar} if  biep > boey
We notice that

T (supp(op)) = T8~ a,f+a])
et a ay + az ay + az ay + as
- [ 2 s, 2 7“] [ 2 r, 2 + 5] ’
where
) o\ 1/2 ) o\ 1/2
a;—a a; —a
r= (‘\/ bicr — baca| + ! 7 2 ) , §= (‘\/ bici + baca| + ! 7 2 ) .

As we can see, for the case when byc; > bocy a set of polynomials orthogonal with respect
to a weight function, of the form p(x) + §(x — o) where p(x) is a continuous function, i.e.,
a Krall-type weight function appears in a very natural way.

WKB Approximation for the distribution of eigenvalues of a tridiagonal two-
periodic symmetric matrix.

To conclude this work let us to consider an special case of a symmetric n x n matrix [7]

0 0 0
d 0 0
a ¢ 0

oo Q
Q[ O

(45)

For this matrix we will obtain the density of the distribution of eigenvalues, i.e., the WKB
density of the corresponding sequence of orthogonal polynomials which are, in general, of the
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Krall-type. Here we want to point out that in the odd case (m = 2n+ 1) the corresponding
polynomials are Qant1(2) = (2 — a)P,(T(x)), so we can consider only the distribution of
zeros of P, since for any n, x = a is always a zero of the polynomial and then an eigenvalue
of Hsy,. Furthermore, P,(T(x)) is a quadratic modification of the Chebyshev polynomials
Upn () and then they satisfy a SODE which follows from the classical ones

(1 = 2))U (x) = 32U (x) + n(n 4+ 2)U,(x) = 0, (46)

just providing the change < T'(x). In fact we have that P,(7T(z)) satisfies a SODE (39)
with the coefficients

p(z) = (4c2d2— (—(ab)—i—cz—i—dz—l—ax—l—bx— xz)z)

q(z) = 3(—a—b+2x) (—(ab)—i—cz—i—dz—i—ax—l—bx— xz)—
-2 (4czd2—(—(ab)—i—cz—l—dz—l—ax—l—bx— xz)z)

rz)= n((2+n) (—a—b—l—?x)z

For the even case the situation is more complicated since we need to calculate the SODE for
the R,(T(x)) polynomials. Using the symbolic program MATHEMATICA [41], as well as the
package PowerSeries developed by Koepf [26] we obtain for the R, () polynomials a SODE
(39) with coefficients

p(g;): (1—|—n—|—c4n—|—czx—|—262nx) (—1—1—1‘2)
gz)y=c*+2*n+3x+3ne+3ctne+22 22 +4c%na? (48)
2

r(z)==2n+ctn—-3n2—n®>—ctn®—c?nae—-3cin?r—-2c20%2

The change of variables # — T'(x) (T(z) = (# — a)(# — b)) in the previous SODE yields
P(2)Qy, (x) + §(2)Qh, (¥) + 7(2)Qan(2) = 0,
where the coefficients are given by

) = 4wy (125

2ed
i(e) = 20dT"(2)%q (L2220 — searp (Hepe=t) (19)

2ed

i) = T'(w)r (P50

Substituting (47), (49) in (42) we can find the WKB density of the eigenvalues of the
Hamiltonian matrix B,,. An straightforward calculations show us that the conditions of the
Theorem 1 are satisfied if n >> 1. The expression for the pwxrp(z), in both cases, is to
large and we will only show the typical behaviour of the WKB density (see figure 5).

As we can see in figure 5 we have that all eigenvalues are located inside the support of the

measure ecxept the one equal to a in the odd case. In the picture the values a = 1,6 =

2, ¢ =3 and d = 4 are used (from top to bottom n = 10000, 5000, 1000, 100).
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Figure 5: WKB Density of the Distribution of the eigenvalues of the symmetric matrix H.

Appendix I: The second order differential equation for the Krall

polynomials.

In this section we give a general algorithm to obtain the second order differential equation
(SODE) which satisfy the considered Krall polynomials, denoted here by ]Sn(x), le., the
Jacobi-Koornwinder, the Laguerre-Koekoek, the Hermite-Krall and Gegenbauer-Krall poly-
nomials. The main fact that we will use is such that all of them can be represented in terms

of the classical families {P,} in the form

q(x)Pa(x) = a(x) P (x) + b(x) Py (),

where ¢, a, b are polynomials in z and some function on n (see formulas (16), (20), (23) and
(29)). In the next table are represented ¢, a,b for each of the families {P,}

Py (x) q(x) a(x) b(x)
PesAB@y |1 | 1=n g = a5 | IV (=) + TR (L + x)
LA () 1 1 I,
HE (z) 2x 2x B,
Gyt () 2 2¢(1 +mWa) WAL - 2?)

(50)

It is known that the classical polynomials satisfy a certain SODE of hypergeometric type

[36], [39] of the form

Pp(z) 4+ APy(z) =0,

(51)



where degree (o) < 2, degree (7) = 1, degree (A) = 0. Now if we take derivatives in (50) and
use the SODE (51) we can obtain formulas similar to (50) but for the derivatives P, (x) and
By (x)

(2) P () + d(w) Py (x
(2) () + f(2) Py (2

where r,s,¢,d, e, f are some functions of o(x), 7(x), A, ¢(x) a(z) and b(x) depending on x
and n (they are polynomials in # of bounded degree). The above two expressions and (50)
lead to the condition

n ’

r(x)]s/(x) =c
s(x)P'(x) =e

( )
( )

bl

( n
r(x) N,’L(x) e(z) d(z) |=0. (52)
(2)P(x) e(x) flx)

Expanding the determinant in (52) by the first column, we find

42 -

az

LB (a) 4 An() Pulr) = 0, (53)

G (2)

where

Ta(2) = r(2)[e(x)b(x) — a(z) f(2)], (54)
An(@) = g(@)[e() f(x) — e(x)d(x)].

In some cases the coefficients can be simplified by some factor and the equation (53) becomes
more simple. To conclude this section we will provide the SODE for the four considered poly-
nomials. We want to remark that in order to obtain the explicit formulas of the coefficients
of the SODE (54) we have used the symbolic package MATHEMATICA [41].

Jacobi-Koornwinder polynomials.

The existence of this SODE was proved by Koornwinder [27] and the coefficients were
calculated explicitly in [20] and [5]. Using (54) we find
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2B TR g2 TP 2 pagpfetn? agnafe g e 2T R e p 20 I
—20zJZ’)%’ﬂ2nx - ZQJZZC];’ﬂJg’)i’D‘nx+ZQJZZ%’ﬂJg’)i’an+2@ng%a2nx— 2JZ’)§;’ﬂ2 n2eq4
+2 Jg’)i’oﬂ nZe— 224 Jzzg’ﬂ 2 4+ onZ’)C];’ﬂ 2 4 B Jzzg’ﬂ 2 4+ Jg’)i’o‘ 2 4+ ong’)i’o‘ 2 4 B Jg’)i’o‘ z2

++2JZ’§;’ﬂnx2+2Jg’i’anx2)
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Laguerre-Koekoek polynomials.

The equation for the Laguerre-Koekoek polynomials was found in [25]. From (54) we obtain
Fn(z) == (—Fn —aFn—i—Fnzn—l—x—l—an),

(—QFn—3oan—aZFn+2Fn2n+aFn2n—|—x+ax+
—|—2an+2afnx—Fn2nx—x2—anz),

5]1
—
3]
~—
Il

An () :n(—QFn—aFn—Fnz—l—Fnzn—l—x—l—an).

Hermite-Krall polynomials.

The equation for the Hermite-Krall polynomials was found in [6]. Using (54) we deduce

Q
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—~
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x (—Bm—i—QBfnm—i—sz—l—QBmxz),
Fo(2) = 2(=Bpm + 2 B2, m+ By, 2” — 2 B2, ma? — 22* — 2 B, %), (55)

An(x) =4mz (=3 By — 2B +2B2, m+ 22>+ 2By 2?).
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Gegenbauer-Krall polynomials.

The equation for the Gegenbauer-Krall polynomials was found in [6]. Equation (54) yields

Gm(z) =2 (1-2?) (Wn‘;‘—i—mWn‘;‘Z—szWn‘;‘Z—sz/Wn‘;‘z—
—21‘2—4mWn‘3x2—21/Wn‘3x2),

Fo(z)= —2WA—2mWA? +4m2 WA + dmv WA” + 3WA 22+
—|—21/Wn‘3x2—|—3mWn‘32x2—6m2Wn‘32x2—4m1/Wn‘22x2—
—4m21/Wn’32x2—4m1/2Wn‘32x2—21‘4—41/1‘4—
—4mWn‘;‘x4—21/Wn‘3x4—8m1/Wn‘3 4—41/2Wn‘3x4 ,

(56)

:\m(x) = dm(m+v)zx (—BWH‘;‘ —|—I/Vn‘;‘2 — 3mI/Vn‘;‘2 +2m? W,,‘;‘Z—
— 2w WA 2my WA 207 4 Am WA 2?4 20 WA )
If in all cases we take the limit when the masses tend to zero we obtain the SODE of the
corresponding classical polynomials. Again we remember that all explicit expressions for
the coefficients of the SODE were obtained by using the computer algebra package MATH-

EMATICA [41] and they will be useful to study the spectral properties of the polynomials
under consideration.
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