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2 �ALVAREZ-NODARSE, ARVES�U AND Y�A~NEZa review see [8, 9, 17℄ up to the middle of seventies and [5, 40℄, sine then upto now). This is partiularly true for the deeper problem of linearizationof a produt of any two polynomials. Usually, the determination of theexpansion oeÆients in these partiular ases required a deep knowledgeof speial funtions and, at times, ingenious indution arguments based inthe three-term reurrene relation of the involved orthogonal polynomials[9, 14, 16, 17, 22, 25, 34, 42, 43, 44℄. Only reently, general and widelyappliable strategies begin to appear [5, 6, 7, 13, 19, 24, 26, 27, 29, 30, 31,39, 41℄.One of the reasons for this inreasing interest is the appliations of suhkind of problems in several branhes of Mathematis and Physis. Forexample, Gasper in his paper [17℄, motivated the onnetion and lineariza-tion problem in the framework of the positivity. Nine years after, one of themost famous onjeture: The Bieberbah onjeture (janj � n) for analytiand univalent funtions of the form f(z) = z +P1n=2 anzn in jzj < 1, hasbeen solved by Louis de Branges using an inequality proved by Askey andGasper in 1976 [10℄ in the framework of the positivity. In fat they provedthat for 0 � t < 1, � > �2,nXk=0P�;0k (t) = (�+ 2)nn! 3F2� �n; n+ �+ 2; �+22�+32 ; �+ 1 ���t� � 0; (1)where (a)n is the Pohhammer symbol and P�;�n (x) denotes the lassialJaobi polynomials. Here in this work we will study the problem of �ndingthe the onnetion mn and linearization jmn oeÆients, i.e., the oeÆ-ients on the expansions [9℄qm(x) = mXn=0 mnpn(x); (2)qm(x)rj (x) = m+jXn=0 jmnpn(x); (3)respetively, where qm(x) and rj(x) are any mth-degree and jth-degreepolynomials, and fpng denotes an arbitrary set of polynomials.Notie that, sine the involved hypergeometri series in (1) is terminat-ing, i.e., has a �nite number of terms, the above problem an be onsideredas a onnetion problem between two families of polynomials where all theonnetion oeÆients are positive (and equal to 1 in this example). So theGasper's words about the importane in appliations of the onnetion andlinearization problems, and the positivity of the orresponding oeÆients,beome very atual and of interest.



CONNECTION AND LINEARIZATION PROBLEMS 3The �rst who onsidered the linearization problem for disrete polyno-mials (notie that in the de Branges's proof the \ontinuous" Jaobi poly-nomials have been used) was Eagleson in 1969 for Kravhuk polynomials[14℄. Later on, Gasper [17℄ studied the onnetion problem for the Hahnh�;�(x;N) polynomialsh;�j (x;M) = jXn=0 jn h�;�n (x;N); j � minfN � 1;M � 1g;and ompletely solved it (the partiular ase N = M , of interest beausejn � 0, he solved one year earlier in [16℄), from where, by limiting proessit is possible to obtain the onnetion oeÆients for Jaobi polynomialsas well as for other ontinuous and disrete families (see [16, 17℄ for furtherinformation on this). Some years later, Askey and Gasper [11℄ onsideredthe linearization problem when the involved polynomials were the disretepolynomials of Hahn, Meixner Kravhuk and Charlier (for a review ondisrete polynomials see [32℄) but only in the speial ase when all rm,qj and pn belong to the same family with the same parameters (in [17℄some preliminary results regarding to the positivity of suh oeÆientswere disussed).In all these ases, ontinuous and disrete, the proofs were based on veryspei� harateristi of the involved families, partiularly their hyperge-ometri representation and generating funtions have been exploited for�nding the orresponding solution.It is important to remark that, even in the ase when it is possibleto ompute expliitly the onnetion or the linearization oeÆients, notalways is easy to show that they are nonnegative whih were importantas we already pointed out. This led to a reurrent method, i.e., to �nda di�erene equation for the oeÆients mn and jmn, respetively, andfrom it to dedue their non negativity. The �rst who did it was Hylleraas[22℄ in 1962 for a produt of two Jaobi polynomials. In fat Hylleraas wasable to solve the obtained reurrene relation for some speial ases andprove the non negativity of the oeÆients in some of these ases. Later,this method has been used by Askey and Gasper (see e.g. [11℄) to provethe non negativity of the linearization oeÆients for ertain families oforthogonal polynomials.More reently, Ronveaux, Zarzo, Area and Godoy [6, 19, 39℄, developeda reurrent method, alled NaViMa algorithm, for solving the onnetionproblem (2) for all families of lassial polynomials, as well as some spe-ial kind of linearization problem and used it for solving di�erent problemsrelated with the assoiated, Sobolev-type polynomials, et [20, 21℄. Al-though, they use it only for solving a very speial linearization problem,it an be easily extended for solving the general problem (3) [13℄. Let us



4 �ALVAREZ-NODARSE, ARVES�U AND Y�A~NEZpoint out that there is a very similar algorithm for �nding the reurrenerelation for both, onnetion and linearization oeÆients due to Lewanow-iz [26, 27, 29℄. The most important tool in the both aforesaid algorithmswas the struture relations (or Al-Salam & Chihara haraterization) thatthe polynomials pn in (2) and (3) satisfy.Both problems, onnetion and linearization, are of great interest also inPhysis. For example, for the 2l�pole transitions in hydrogen-like atoms(and other related systems) the radial part of the probability is proportionalto integrals of the formT 1 2l = Z 10 [L2l1+1n1 (�1r)L2l2+1n2 (�2r)℄rme�rdr;where Lln are the Laguerre polynomials. This kind of integrals also appearsin the theory of Morse osillators as well as in transitions for spherial-symmetri systems [34℄. Furthermore, for spherial-symmetri the Wigner-Ekkart theorem [15℄ allows to write the matrix elements of ertain irre-duible operators in terms of produts of two (or more) 3j symbols (Hahnand dual Hahn polynomials [32℄), 6j symbols (Raah polynomials [32℄), etas well as their q�analogues.To onlude this introdution we need to say that in the world of q�po-lynomials (disrete ase) there are not so many results onerning to theseproblems. One of the �rst who was interested on this was Rogers [37, 38℄who used a q�analogue of the onnetion formula for Jaobi polynomialsP ;n (x) = P[n=2℄j=0 j;nP �;�n�2j(x), n;j � 0, for the q�ultraspherial polyno-mials to prove some Rogers-Ramanujan identities (see also [36℄). Also, veryreently, this problem has been onsidered in [3, 4, 28℄ for q�polynomialsin the exponential lattie x(s) = qs [2, 33, 32℄, where the authors obtainedreurrene relations for the oeÆients in (2) and (3). Again, in theseworks the use of the struture relations plays a fundamental role. Butnot for any arbitrary family of q�polynomials there exist suh relations.In [2℄ it is proven that all families of q�polynomials on the exponentiallattie x(s) = 1qs + 3 satisfy suh a relation, but for the general lattiex(s) = 1qs + 2q�s + 3 [12, 32℄ the problem is still open. Then, the fol-lowing question naturally arises: What to do in ase when we do not havestruture relations? This question was solved for the ontinuous ase in[7, 41℄ and for the disrete ase in [5℄.The main goal of the present paper is give and alternative method for�nding the onnetion and linearization problem for q-hypergeometri poly-nomials obtaining expliit expressions for the oeÆients mn and jmn in(2)-(3) in terms of the oeÆients of the seond order di�erene equa-tion of hypergeometri-type on the general non-uniform lattie x(s) =1qs + 2q�s + 3 that suh polynomials satisfy. The resulting expansion



CONNECTION AND LINEARIZATION PROBLEMS 5oeÆients are given in a ompat form in terms of the polynomial o-eÆients of the orresponding seond-order di�erene equations. Notiethat the above lattie ontains, as a partiular ase, the exponential lattiex(s) = qs whih has been �rstly onsidered in [4, 28℄. The advantage of thepresent approah is that it only requires the knowledge of the seond orderdi�erene equation satis�ed by the involved hypergeometri q-polynomialsas well as their hypergeometriity, i.e., the Rodrigues-type formula. Then,ontrary to the algorithm presented in [4, 3, 28℄, we do not require in-formation about any kind of reurrene relation of the involved disretehypergeometri q-polynomials nor we need to solve any \high" order reur-rene relation for the onnetion oeÆients themselves.The struture of the paper is as follows. In Setion 2, we ollet thebasi bakground [32℄ used in the rest of the work; namely, the seond-order hypergeometri di�erene equation on the uniform lattie x(s) and itspolynomial solutions (alled as hypergeometri q-polynomials). In Setion3, we present the main results of the paper, namely, the expressions forthe onnetion and linearization oeÆients mn and jmn, respetively.In partiular, we show how the main formulas and theorems given in [5℄for the linear lattie x(s) = s, as well as the ones given in [7, 41℄ hold aspartiular ases. Finally, in Setion 4, some examples are developed.2. SOME BASIC PROPERTIES OF THE Q�POLYNOMIALS.Here we will summarize some of the properties of the q-polynomials [32℄useful for the rest of the work.2.1. The hypergeometri-type di�erene equation.Let us onsider the seond order di�erene equation of hypergeometritype �(s) 44x(s� 12 )5y(s)5x(s) + �(s)4y(s)4x(s) + �y(s) = 0;�(s) = ��(x(s)) � 12 �� (x(s))4 x(s� 12 ); �(s) = �� (x(s));5f(s) = f(s)� f(s� 1);4f(s) = f(s+ 1)� f(s) ; (4)where 5f(s) and 4f(s), denote the bakward and forward �nite di�erenederivatives, respetively, ��(x) and ��(x) are polynomials in x(s) of degree atmost 2 and 1, respetively, and � is a onstant. It is important to notie thatthe above di�erene equation has polynomial solutions of hypergeometritype i� x(s) is a funtion of the formx(s) = 1(q)qs + 2(q)q�s + 3(q) = 1(q)[qs + q�s��℄ + 3(q); (5)



6 �ALVAREZ-NODARSE, ARVES�U AND Y�A~NEZwhere 1, 2, 3 and q� = 12 are onstants whih, in general, depend on q[12, 32, 33℄.The polynomial solutions of (4) is determined by the q�analogue of theRodrigues Formula on the non-uniform latties [32, page 66, Eq. (3.2.19)℄Pn(s)q = Bn�(s) 5(n) [�n(s)℄; 5(n) � 55x1(s) 55x2(s) : : : 55xn(s) ; (6)where the funtion �n(s) is given by�n(s) = �(s+ n) nYi=1�(s+ i); and xm(s) = x(s+ m2 ); (7)and �(s) is the solution of the Pearson-type di�erene equation44x(s� 12 ) [�(s)�(s)℄ = �(s)�(s): (8)Throughout the paper [n℄q denotes the so alled q-numbers and [n℄q! arethe q-fatorial [n℄q = q n2 �q�n2q 12�q� 12 , [n℄q! = [1℄q [2℄q � � � [n℄q .Also the di�erene derivatives ykn(s)q of the polynomial solution Pn(s)q ,de�ned byykn(s)q = 44xk�1(s) 44xk�2(s) : : : 44x(s) [Pn(s)q ℄ � 4(k)[Pn(s)q ℄ ; (9)satisfy a Rodrigues-type formulaykn(s)q = 4(k)Pn(s)q = AnkBn�k(s) 5(n)k [�n(s)℄; (10)where 5(n)k f(s) = 55xk+1(s) 55xk+2(s) � � � 55xn(s) [f(s)℄, is given by (seeappendix A)5(n)k f(s) = n�kXl=0 (�1)l � n� kl �q 5xn(s� l + 12 )n�kYm=05xn(s� m+l�12 )f(s� l); (11)and Ank = [n℄q ![n� k℄q! akBk , where an denotes the leading oeÆient of thepolynomial Pn, i.e., Pn(x) = anxn+ lower order terms. Here, and through-



CONNECTION AND LINEARIZATION PROBLEMS 7out the paper we will use the following notation for the symmetri q-binomial oeÆients � nm �q = [n℄q![m℄q ![n�m℄q ! : (12)In this paper we will deal with disrete orthogonal q-polynomials, i.e.,polynomials with a disrete orthogonalityb�1Xs=aPn(s)qPm(s)q�(s)4 x(s� 12 ) = Ænmd2n; s = a; a+ 1; : : : ; b� 1; (13)where �(x) is a solution of the Pearson-type equation (8), and it is a non-negative (not identially zero) weight funtion, i.e., �(s) 4 x(s � 12 ) � 0,a � s � b � 1, supported on a ountable subset of the real line [a; b℄(a; b an be �1). This ondition follows from the di�erene equation ofhypergeometri-type (4), providing that the following boundary ondition�(s)�(s)xk(s� 12 )���s=a;b = 0; k = 0; 1; 2; ::: ; (14)holds [33℄. Notie that the above boundary ondition (14) is valid fork = 0. Moreover, if we assume that a is �nite, then (14) is ful�lled ats = a providing that �(a) = 0 [32, x3.3, page 70℄. In the following we willassume that this ondition holds. The squared norm in (13) is given by[32, Chapter 3, Setion 3.7.2, pag. 104℄d2n = (�1)nAnnB2n b�n�1Xs=a �n(s)4 xn(s� 12 ): (15)In the most general ase, the solution of the q-hypergeometri equation(4) orresponds to the ase�(s) = A[s� s1℄q [s� s2℄q[s� s3℄q [s� s4℄q ; A = onst 6= 0: (16)and has the form [33℄Pn(s)q = Dn 4'3 q�n; q2�+n�1+P4i=1si ; qs1�s; qs1+s+�qs1+s2+�; qs1+s3+�; qs1+s4+� ; q ; q! ; (17)



8 �ALVAREZ-NODARSE, ARVES�U AND Y�A~NEZwhere, Dn is a normalizing onstant, �q = q 12 � q� 12 , and the basi hyper-geometri series p'q are de�ned by [18℄r'p�a1; : : : ; arb1; : : : ; bp ; q ; z� = 1Xk=0 (a1; q)k � � � (ar; q)k(b1; q)k � � � (bp; q)k zk(q; q)k h(�1)kq k2 (k�1)ip�r+1 ;and (a; q)k = k�1Ym=0(1� aqm); (18)is a q�analogue of the Pohhammer symbol.3. MAIN RESULTS.Here we �nd the expliit expression of the oeÆients mn in the expan-sion of an arbitrary q-polynomial Qm(s)q on x(s) in series of the orthogonaldisrete hypergeometri set of q-polynomials fPng in the same non-uniformlattie x(s), i.e. Qm(s)q = mXn=0 mnPn(s)q : (19)Theorem 3.1. The expliit expression of the oeÆients mn in the ex-pansion (19) ismn = (�1)nBnd2n b�n�1Xs=a 4(n) [Qm(s)q ℄ �n(s)4 xn(s� 12 )=(�1)nBnd2n b�1Xs=a4(n)[Qm(s� n)℄�n(s� n)4 x(s� n+12 ): (20)Proof. Multiplying both sides of Eq. (19) by Pk(s)q�(x)4x(s� 12 ), andsumming between a and b� 1, the orthogonality relation (13) immediatelygives mn = 1d2n b�1Xs=aQm(s)qPn(s)q�(s)4 x(s� 12 ) : (21)



CONNECTION AND LINEARIZATION PROBLEMS 9Next we use the Rodrigues formula (6) for Pn(s)q . This yieldsmn = Bnd2n b�1Xs=aQm(s)q 5(n) [�n(s)℄4 x(s� 12 ) == Bnd2n b�1Xs=aQm(s)q 5 h5(n)1 [�n(s)℄i :Then, using the formula of summation by partsb�1Xxi=a f(xi)5 g(xi) = f(xi)g(xi)���b�1a�1 � b�1Xxi=a g(xi � 1)5 f(xi);we obtain for mn the expressionBnd2n Qm(s)q 5(n)1 [�n(s)℄���b�1a�1 � Bnd2n b�1Xs=a5Qm(s)q 5(n)1 [�n(t)℄���t=s�1: (22)Notie that the �rst term is proportional to �1(s) = �(s + 1)�(s + 1), so,sine the ondition (14), it vanishes. Now, making the hange s! s� 1 inthe seond term, we �ndmn = �Bnd2n b�2Xs=a�14Qm(s)q 5(n)1 [�n(s)℄ :But5(n)1 [�n(s)℄ = 55x2(s) 5(n)2 [�n(s)℄; 5x2(s) =5x(s+ 1) = 4x(s);then, the last equation transformsmn = �Bnd2n b�2Xs=a�1 44x(s) [Qm(s)q ℄5 h5(n)2 [�n(s)℄i :Repeating this proess k times, we obtainmn = (�1)kBnd2n b�k�1Xs=a�k 44xk�1(s) � � � 44x(s) [Qm(s)q ℄5 h5(n)k+1[�n(s)℄i == (�1)kBnd2n b�k�1Xs=a�k4(k)[Qm(s)q ℄5(n)k [�n(s)℄4 xk(s� 12 ):



10 �ALVAREZ-NODARSE, ARVES�U AND Y�A~NEZPutting k = n and using 5(n)n [�n(s)℄ = �n(s) as well as that �n(a� k) = 0for k = 1; 2; :::; n (see Eq. (7)), we obtain the desired expression (20) formn.To obtain the seond expression for mn we transform (20) using theidentity5(n)1 [�n(s� 1)℄ = 55x2(s� 1) 5(n)2 [�n(s� 1)℄ = 55x(s) 5(n)2 [�n(s� 1)℄:Then Eq. (22) beomesmn = �Bnd2n b�1Xs=a 55x(s) [Qm(s)q ℄5 h5(n)2 [�n(s)℄i :Applying k�times the same tehnique as before we �ndmn = (�1)kBnd2n b�1Xs=a 55x(s� k�12 ) 55x(s� k2 + 1) � � � 55x(s) [Qm(s)q ℄�5(n)k [�n(s� k)℄4 x(s� k+12 ):The hange k = n and the fat that4(n)Qm(s� n) = 55x(s� n�12 ) � � � 55x(s) [Qm(s)q ℄;lead us to the result.Corollary 3.1. If Qm is an hypergeometri polynomial satisfying anequation of the form (4) but with oeÆients ~�, ~� , and ~�m, then, the expliitexpression of the oeÆients mn in the expansion (19) ismn = (�1)nBn ~Bm ~Amnd2n m�nXl=0 (�1)l � m� nl �q �b�n�1Xs=a ~�m(s� l)�n(s)~�n(s) 4xm(s� l� 12 )4 xn(s� 12 )m�nYk=0 4xm(s� k+l+12 ) : (23)
Proof. The proof follows from the equations (20), (9) and (11).As a simple onsequene of the theorem 3.1 we obtain the followingresult for the linearization problem, whih onsists of �nding the expansion



CONNECTION AND LINEARIZATION PROBLEMS 11oeÆients jmn of the relationRj(s)qQm(s)q = m+jXn=0 jmnPn(s)q ; (24)where fPng is a disrete orthogonal set of hypergeometri q-polynomialswhih satisfy the di�erene equation (4) and Qm and Rj are arbitraryq-polynomials on the same lattie x(s).Theorem 3.2. The expliit expression of the oeÆients jmn in theexpansion (24) isjmn = (�1)nBnd2n b�n�1Xs=a 4(n) [Qm(s)qRj(s)q ℄ �n(s)4xn(s� 12 ) (25)= (�1)nBnd2n b�1Xs=a 55x(s� n�12 ) � � � 55x(s) [Qm(s)qRj(s)q℄�n(s� n)4x(s� n+12 ):Theorem 3.3. Let Rj be the j�degree q-hypergeometri polynomial so-lution of the seond order di�erene equation on the non-uniform lattiex(s) e�(s) 44x(s� 12 )5y(s)5x(s) + e� (s)4y(s)4x(s) + e�jy(s) = 0; (26)Then, expliit expression of the oeÆients jmn in the expansion (24) isgiven byjmn = (�1)nBn ~Bjd2n nXk=0 � nk �q ~Aj k�b�n�1Xs=a �n(s)4 xn(s� 12 )~�k(s+ n� k) [4(n�k)Qm(s)q ℄[5(j)k ~�j(s+ n� k)℄ ; (27)or, equivalently,jmn = (�1)nBn ~Bjd2n nXk=0 � nk �q ~Aj n�k�b�n�1Xs=a �n(s)4 xn(s� 12 )~�n�k(s) [4(k)Qm(s+ n� k)q ℄[5(j)n�k~�j(s)℄ : (28)



12 �ALVAREZ-NODARSE, ARVES�U AND Y�A~NEZProof. Using the q�analog of the Leibniz formula in the non-uniformlattie (5) [1℄4(n)[f(s)g(s)℄ = nXk=0 � nk �q 4(k) f(s+ n� k)4(n�k) g(s); (29)for the expression4(n) [Qm(s)qRj(s)q ℄ in Eq. (25), as well as the Rodrigues-type formula (9) for 4(k)Rj(s+ n� k)q4(k)Rj(s+ n� k)q = ~Aj k ~Bj~�k(s+ n� k) 5(j)k [~�j(s+ n� k)℄;the desired result holds. The seond formula an be obtained analogouslybut starting from the seond equation of Theorem 3.2.Corollary 3.2. The expliit expression of the oeÆients jmn in theexpansion (24) is given byjmn = (�1)nBn ~Bjd2n nXk=0 � nk �q~Aj k j�kXl=0 (�1)l� j � kl �qb�n�1Xs=a ~�j(s+ n� k � l)~�k(s+ n� k) �4xj(s+ n� k � l � 12 )j�kYm=04xj(s+ n� k � m+l+12 ) [4(n�k)Qm(s)q ℄ �n(s)4 xn(s� 12 ) :Proof. To prove this it is suÆient to substitute the expression (11) in(27).Notie that the orollary 3.1 also follows from the above formula if we putm = 0 sine Q0 � 1.3.1. Speial ase: The lassial disrete polynomials.In the speial ase when x(s) is the linear lattie, i.e, x(s) = s, fromTheorem 3.1 and 3.2 we reover the main results in [5℄ for the onnetionand linearization problems, respetivelyTheorem 3.4. Let be x(s) the linear lattie x(s) = s. Then, the expliitexpression of the oeÆients mn in the expansion (19) ismn = (�1)nBnd2n b�n�1Xs=a 4nQm(s)�(s+ n) nYk=1 �(s+ k)= (�1)nBnd2n b�1Xs=a5nQm(s)�(s) n�1Yk=0 �(s� k):



CONNECTION AND LINEARIZATION PROBLEMS 13If Qm is also an hypergeometri polynomial, thenmn = (�1)nBn ~Bm ~Amnd2n b�n�1Xs=a m�nXk=0 �n(s)~�n(s) �m� nk � (�1)k ~�m(s� k)= (�1)nBn ~Bm ~Amnd2n b�1Xs=a m�nXk=0 �n(s� n)~�n(s� n) �m� nk � (�1)k ~�m(s� n� k) :Theorem 3.5. Let be x(s) the linear lattie x(s) = s. Then, the expliitexpliit expression of the oeÆients jmn in the expansion (24) is given byjmn = (�1)nBn ~Bjd2n k+Xk=k��nk� ~Ajk b�n�1Xs=a j�kXl=0 (�1)l�j � kl � �n(s)~�k(s+ n � k)�~�j(s+ n� k � l)[5n�kQm(s+ n� k)℄ = (�1)nBn ~Bjd2n k+Xk=k��nk� ~Ajk�= b�1Xs=a j�kXl=0 (�1)l�j � kl � �n(s� n)~�k(s� k) ~�j(s� k � l)[5n�kQm(s� k)℄ ;where k� = max(0; n�m) and k+ = min(n; j).In all the above formulas �nm� denotes the binomial oeÆients n!m!(n�m)! .3.2. Speial ase: The lassial ontinuous ase.Finally, we will show how from Theorem 3.1 we an reover (formally)the general results for the ontinuous ase [7, 41℄. In order to do this wenotie that, formally, if we make the hange x(s) = sh! x, then [32℄,Pn(x(s + 1))� Pn(x(s))xk(s+ 1)� xk(s) = Pn(sh+ h)� Pn(sh)h = Pn(x+ h)� Pn(x)h :Here we have used the notation Pn(x(s)) � Pn(s)q . Thus, limh!0 4Pn(x(s))4xk(s) =P 0n(x) and limh!04(k)Pn(s)q = dkPn(x)dxk . Then, by similar limiting proessesEq. (4) transforms into the lassial hypergeometri di�erential equation[32℄ �(x)P 00n (x) + �(x)P 0n(x) + �nPn(x) = 0:where �(x) = limh!0 ��(x(s)), �(x) = limh!0 ��(x(s)) being x = sh. Fur-thermore, the Pearson-type equation (8) beomes [�(x)�(x)℄0 = �(x)�(x)



14 �ALVAREZ-NODARSE, ARVES�U AND Y�A~NEZand also [32℄ �n(s;h) ! �(x)�n(x). Finally, the Rodrigues-type formula(6) transforms into4(k)Pn(s)q = AnkBn�k(s) 5(n)k [�n(s)℄! dkPn(x)dxk = AnkBn�k(x) dn�kdxn�k [�(x)�n(x)℄:Now we put x(s) = sh in (20)mn(h) = (�1)nBn(h)d2n(h) (b�1)h�nhXxi=ah 4(n) [Qm(xi)q ℄ �n(xi=h;h)h == (�1)nBn(h)d2n(h) B�nhXx=A 4(n) [Qm(xi)q ℄ �n(xi=h;h)h; xi+1 = xi + h:Let us prove that the above sum transforms in the limit in a integral fromwhih the main result in [41, Theorem 3.1, page 163℄ easily follows. Moreonretely, limh!0 mn(h) = (�1)nBnd2n Z BA dkQm(x)dxk �(x)�n(x) dx;where d2n is the squared norm for the polynomials orthogonal with respetto �(x) [32℄.In order to do that, let us show that the quantityIn(Qm; �n) � �����B�nhXx=A 4(n) [Qm(sh)q℄ �n(xi=h; h)h� Z BA Q(n)m (x)�(x)�n(x)dx�����an be small enough for h suÆiently small. So,jIn(Qm; �n)j � B�nhXxi=A ���4(n) [Qm(sh)q ℄�Q(n)m (xi)��� �n(xi=h;h)h+B�nhXxi=A ���Q(n)m (xi) f�n(xi=h;h)� �n(xi)g���h+�����B�nhXxi=A Q(n)m (xi)�n(xi)h� Z BA Q(n)m (x)�n(x) dx����� ;where Q(n)m denotes the n-th derivative of Qm and �n(x) = �(x)�n(x). Letonsider �rst the ase when B is bounded. In this ase the �rst integral



CONNECTION AND LINEARIZATION PROBLEMS 15an be small enough (less that �=3) for h suÆient small providing that�n(xi=h;h) is bounded. In the following we will suppose that the limitfuntion �n(x), n � 1 is a ontinuous funtion in [A;B℄. For the seondsum we an do the same sine Qm is a polynomial and then it is boundedin any losed interval. Finally we will onsider the last sum whih an berewritten in the form����� BXxi=AQ(n)m (xi)�n(xi)h� Z BA Q(n)m (x)�n(x) dx�����+����� BXxi=B�hnQ(n)m (xi)�n(xi)h����� :Notie that the �rst sum an be less �=6 sine it is a Riemann sum or-responding to the integral R BA Q(n)m (x)�n(x) dx, and the last sum obviouslytends to zero so, for suÆiently small h, it is less than �=6. So, for anygiven � > 0, one an hose a suÆiently small h so that jIn(Qm; �n)j � �.Finally, to prove the result for the unbounded B we use the fat that,in this ase, the funtions �n(xi=h;h) as well as �n(xi) tend to zero fasterthan any polynomial tends to in�nity when xi ! 1 (see the boundaryonditions (14) for the polynomials on the lattie x(s) as well as for theontinuous ase [32, Eq. (1.3.1) page 7℄). Then,jIn(Qm; �n)j � 1Xxi=A ���4(n) [Qm(sh)q ℄�Q(n)m (xi)��� �n(xi=h;h)h+1Xxi=A ���Q(n)m (xi) f�n(xi=h;h)� �n(xi)g���h++ ����� 1Xxi=AQ(n)m (xi)�n(xi)h� Z 1A Q(n)m (x)�n(x) dx����� � �3 + �3 + �3 = �:To onlude this Setion let us point out that here we have taken thelimit formally and have proved that our main result, i.e., formula (20),transforms into the orresponding one for the ontinuous ase [41℄, butsolving onrete examples one must to be very areful sine, for instane,in the limit Hahn ! Jaobi, the parameter h = 1=N where N is the totalnumber of points in the lattie and the Hahn polynomials expliitly dependon it. More information on how to take limits for onrete families an befound in [18, 23, 32, 33℄.



16 �ALVAREZ-NODARSE, ARVES�U AND Y�A~NEZ4. EXAMPLES.4.1. Connetion between (qs; q)m and �n(x; q).First of all we will apply theorem 3.1 for �nding the onnetion oeÆ-ients qmn in the expansion(qs; q)m = mXn=0 qmn�n(s; q); (30)where (a; q)k is de�ned in (18), and �n(s; q) denotes the q-Charlier polyno-mials on the exponential lattie x(s) = qs�1q�1 [2℄(�)n (s; q) = q n4 (n+5) 2'0� q�n; q�s� ; q ; � qs(q � 1)�� == q n4 (n+5) nXk=0 (q�n; q)k(q; q)k �k (qs; q)[k℄(1� q)k ; 1 < q < 1; 0 < � < 1: (31)where (qs; q)[k℄ =Qk�1m=0(1� qs�m).Obviously, these q-Charlier polynomials (�)n (s; q) are polynomials of de-gree n on any exponential lattie x(s) = 1qs + 3. For these polynomialswe have [2℄:�(s) = �seq[(1� q)�℄�q(s+ 1) ; an = (�1)n�n q� 3n4 (n�1)+n2 ; Bn = 1�n ;d2n = eq[(1� q)qn+1�℄eq [(1� q)�℄ [n℄q!q n4 (n�9)+ 12 �n ; �n(s) = �s+nq n2 (n+2s+1)eq[(1� q)�℄�q(s+ 1) ;where eq[z℄ denotes the q- exponential funtion [18℄ de�ned byeq[z℄ = 1Xk=0 zk(q; q)k = 1(z; q)1 ; �q(s) = (1� q)1�s (q; q)1(qs; q)1 ;where (z; q)1 =Q1k=0(1� zqk). Notie that all the harateristis of theseq�Charlier polynomials, as well as the polynomials (�)n (s; q) themselvestransform into the lassial Charlier polynomials in the limit q ! 1. No-tie also that the results presented here remain valid for the q-Charlierpolynomials in the lattie x(s) = qs [1, 2℄ sine their hypergeometri rep-resentation is given by the same basi hypergeometri series (31).Now, using4(qs; q)n4x(s) = �q n�12 [n℄q�11 (qs+1; q)n�1; x(s) = 1qs + 3: (32)



CONNECTION AND LINEARIZATION PROBLEMS 17we get 4(n) [(qs; q)m℄ = q�n4 (n�1) � 44x(s)�n (qs; q)m= (1� q)n[m℄q !q n2 (m�1)[m� n℄q ! (qs+n; q)m�n:Therefore (20) givesqmn = q n4 (5n�7)(q � 1)n�neq [(1� q)�qn+1℄ �mn�q 1Xs=0 (qs+n; q)m�n [(1� q)�qn+1℄s(q; q)s ;where �mn�q = (q; q)m(q; q)n(q; q)m�n are the lassial q-binomial oeÆients (donot onfuse with the symmetri � mn �q q-binomial oeÆients de�ned in(12)).In order to take the sum in the above expression we will use the identity[18, Eq. (1.2.34) page 6℄ (a qs; q)k = (a;q)k(a qk;q)s(a;q)s , as well as the expression[18, Eq. (1.5.2) page 11℄ (qm;q)s(qn;q)s = Psk=0 (q�s;q)k(qn�m;q)k(qn;q)k qm+s(q;q)k . Thus,denoting by z = (1� q)�qn+1, we have1Xs=0 (qs+n; q)m�n zs(q; q)s = 1Xs=0 (qn; q)m�n(qm; q)s(qn; q)s(q; q)s zs= (qn; q)m�n 1Xk=0 (qn�m; q)kqmk(qn; q)k(q; q)k 1Xs=0 (q�s; q)kqsk(q; q)s zs= (qn; q)m�n 1Xk=0 (qn�m; q)kqmkzk(qn; q)k(q; q)k �(�1)kq k2 (k�1)� 1Xs=k zs�k(q; q)s�k= (qn; q)m�neq[(1� q)�qn+1℄1'1� qn�mqn ; q; �qn+m+1(1� q)� :For the third equality we have used the identity [18, Eq. (1.2.32) page 6℄(q�s; q)k(q; q)s = (�1)kq k2 (k�1)�ks(q; q)s�k : (33)Then, for the oeÆients qmn we �nally obtainqmn = (qn; q)m�n�n(q � 1)nq n4 (5n�7)�mn�q 1'1� qn�mqn ; q; �qn+m+1(1� q)�:



18 �ALVAREZ-NODARSE, ARVES�U AND Y�A~NEZRemark. Notie that, sine (qs;q)m(1�q)m = Pmn=0 qmn(1�q)m �n(x; q), and takinginto aount that limq!1 (qs;q)m(1�q)m = (s)m; limq!1 �n(x; q) = �n(s), we ob-tain taking the limit q ! 1(s)m = mXn=0 mn�n(s); mn = �mn� (m� 1)!(n� 1)! (��)n 1F1� n�mn ���� ��;where �n(s) denotes the lassial (non moni) Charlier polynomials [32,33℄. Sine for these polynomials the leading oeÆients are given by an =(��)�n, the above result oinides with the lassial result (see e.g. [5℄ andreferenes therein).4.2. Connetion between (qs; q)[m℄ and �n(x; q).Now will apply theorem 3.1 for �nding the onnetion oeÆients qmnin the expansion (qs; q)[m℄ = mXn=0 dqmn�n(s; q); (34)where (a; q)[k℄ =Qk�1m=0(1� qs�m) and �n(s; q) is, as before, the q-Charlierpolynomials on the lattie x(s) = qs�1q�1 (31). In this ase, using4(qs; q)[n℄4x(s) = �q�n�12 [n℄q�11 (qs; q)[n�1℄; x(s) = 1qs + 3; (35)we �nd 4(n) h(qs; q)[m℄i = q�n4 (n�1) � 44x(s)�n (qs; q)[m℄= (1� q)n[m℄q !q�n2 (m�1)[m� n℄q! (qs+n; q)m�n:Thus, using formula (20), the expression (qs;q)[m�n℄(q;q)s = 1(q;q)s�m+n , as well as1Xs=0 (qs; q)[m�n℄zs(q; q)s = 1Xs=m�n (qs; q)[m�n℄zs(q; q)s = zm�n 1Xs=0 zs(q; q)s = zm�neq(z);we obtain dqmn = qm+n4 (n�7)�mn�q (1� q)m(�1)n�m: (36)



CONNECTION AND LINEARIZATION PROBLEMS 19The above formula is the q-analogue of the so-alled inversion formula forhypergeometri polynomials (ompare with the expliit expression of theq-Charlier polynomials (31).Remark. If we rewrite (34) in the form(s)[m℄q = mXn=0 ~dqmn�n(s; q); ~dqmn = qm+n4 (n�7)�mn�q (�1)n�m; (37)taking into aount that limq!1 (qs;q)[m℄(1�q)m = (s)[m℄, we obtain in the limitq ! 1 (s)[m℄ = mXn=0 dmn�n(s); dmn = �mn� (�1)n(�)m:Using again the fat that for the polynomials �n(s), the leading oeÆientsare given by an = (��)�n, the above result oinides with well knowlassial result (see e.g. [5℄ and referenes therein.)4.3. The q�Charlier polynomials in the exponential lattie.Finally, we will solve now the onnetion problemm(s; q) = mXn=0 qmn�n(s; q): (38)Then, by using Eq. (23) of the orollary (3.1) where Qm(s)q = m(s; q)and Pn(s)q = �n(s; q), respetively, we get for qmn the expression���n�mn�q q 14 (m�n)(m�n+5)eq[(1� q)qn+1�℄ m�nXl=0 (�1)lq l2 (l�1)qlm(1� q)l l �m� nl �q 1Xs=l [(1� q)�qn+1℄s�l(q; q)s�l= ���n�mn�q q 14 (m�n)(m�n+5) m�nXl=0 (�1)l�� qn�m+1�l�m� nl �q q l(l�1)2 ;where we also use the fat that1Xs=0 zk�q(s� k) = 1Xs=k zk�q(s� k) = 1Xs=k zk (1� q)s�k(q; q)s�k :Now, applying the identity (33) to (q; q)m�n�l (k = l), and using the q-binomial theorem [18, x1.3, Eq. (1.3.14) page 9℄,kXl=0 (q�k; q)l(q; q)l zl = 1'0 � q�k� ; q; z� = (zq�k; q)k ;



20 �ALVAREZ-NODARSE, ARVES�U AND Y�A~NEZwe obtain the following expression for the oeÆient qmnqmn = ���n�mn�q q 14 (m�n)(m�n+5)(qn�m+1 ��1; q)m�n: (39)Notie the positivity of the oeÆients (39) in the ase when �= < qm�1.In the ase of the Charlier polynomials in the exponential lattie a sim-ilar results has been obtained in [28℄ by solving a reurrene relation forthe oeÆients (there the author does not give a losed formula for theonnetion oeÆient).Remark. A simple alulation shows that the equation (38) transforms inthe limit q ! 1 intom(s) = mXn=0�mn����n�1� ��m�n �n(s);for the (non moni) Charlier polynomials and this oinides with the lassi-al results for moni polynomials (see e.g. [5℄) sine the leading oeÆientsfor the Charlier polynomials �n(s) is equal to (��)�n.4.4. Further examples.To onlude the paper we will show two more examples for polynomialson q�quadrati latties, more exatly in the lattie x(s) = [s℄q [s+1℄q, i.e.,1 = q 12 ��2q and � = 1. In this ase there are not struture relations andthen most of the aforesaid (in the introdution) methods an not be used.In fat we will solve the following two examples:(q�s; q)m(qs+1; q)m = mXn=0 dmnu�;�n (x; 0; b);and u;Æn (x; 0; d) = mXn=0 mnu�;�n (x; 0; b);where u�;�n (x; 0; b) denotes the q�Raah polynomials introdued by Niki-forov and Uvarov in [33℄ (see also [1℄)u�;�n (x; 0; b) = 4'3� q�n; q�+�+n+1; q�s; qs+1q�b+1; q�+1; qb+�+1 ; q ; q� : (40)



CONNECTION AND LINEARIZATION PROBLEMS 21For these polynomials we have:�(s) = q (b��)(�1+b+�+2s)4 �q(s+ � + 1)�q(s+ �+ b+ 1)�q(b+ �� s)�q(s+ b+ 1)�q(s+�� + 1)�q(b� s) ;d2n = q��(��1)2 �(�+1)b+ �2+��+2n(����b)��q(�+ n + 1)�q(� + n+ 1)�q(b+ �� � + n+ 1)�q(b+ �+ n + 1)[�+ � + 2n + 1℄q�q(n+ 1)�q(�+ � + n + 1)�q(b� n)�q(b� � � n) :In the �rst ase, using the identity��x(s) (qs1�s; q)m(qs1+s+�; q)m= �qs1+�+�k+12 [k℄q�11 (qs1�s; q)m�1(qs1+s+�+1; q)m�1;for the lattie x(s) = 1(q)[qs + q�s��℄ + 3(q); and (20) we obtaindmn = �mn�q (�1)nq n(n�1)2 (q�b+1; q)m(q�+1; q)m(qb+�+1; q)m(q�+�+n+1; q)n(q�+�+2+n+1; q)n :Finally, using (23), after some straightforward but umbersome alula-tions we �ndmn = (�1)nq n(n+1)2 (q�m; q)n(q�+�+m+1; q)n(q�d+1; q)n(qÆ+1; q)n(qd++1; q)n(q; q)n(q�b+1; q)n(q�+1; q)n(qb+�+1; q)n(q+Æ+n+1; q)n �5'4� qn�m; q�+�+n+m+1; qn�d+1; qÆ+n+1; qd++n+1q+Æ+2n+1; qn�b+1; qn+�+1; qb+�+n+1 ; q ; q� :Notie that if we assume that q 2 (0; 1) and take the limit  !1 we obtainthe onnetion between q�Raah and q�Dual Hahn W (Æ)n (x(s); 0; d)q =3'2� q�n; q�s; qs+1q�b+1; qÆ+1 ; q; q� introdued in [1℄mn = (�1)nq n(n+1)2 (q�m; q)n(q�+�+m+1; q)n(q�d+1; q)n(qÆ+1; q)n(q; q)n(q�b+1; q)n(q�+1; q)n(qb+�+1; q)n �4'3� qn�m; q�+�+n+m+1; qn�d+1; qÆ+n+1;qn�b+1; qn+�+1; qb+�+n+1 ; q ; q� :From the above equation, by taking the limits �;  !1, a formula for theonnetion oeÆients for the q�Dual Hahn | q�Dual Hahn polynomialseasily follows.



22 �ALVAREZ-NODARSE, ARVES�U AND Y�A~NEZAPPENDIX AIn this appendix we will prove the expression (11). In fat we will provethe following Lemma whih is interesting in its own right:Lemma.Let f(s) be an analyti funtion inside and on a urve C on theomplex plane ontaining the points z = s; s � 1; :::; s � n, and 5(n)k theoperator 5(n)k � 55xk+1(s) 55xk+2(s) � � � 55xn(s) :Then5(n)k f(s) = n�kXl=0 (�1)l � n� kl �q 5xn(s� l + 12 )n�kYm=05xn(s� m+l�12 )f(s� l): (A.1)Proof. First of all, notie that the funtion xm(z) = x(z + m2 ), wherex(s) is given by (5) satis�esx(s) � x(s� t) = [t℄q 5 x(s� t�12 ): (A.2)Then, by indution, one has5(n)k � 1xn(z)� xn(s)� = [n � k℄q !kYm=0 [xn(z)� xn(s�m)℄ = [n� k℄q ![xn(z)� xn(s)℄(n�k+1) ;where [xk(z)� xk(s)℄(m) = m�1Yj=0 [xk(z)� xk(s� j)℄ ; m = 0; 1; 2::: ; (A.3)denotes the generalized powers. Sine f is analyti, then by using theCauhy formula f(s) = 12�i ZC f(z)x0n(z)xn(z)� xn(s)dz; (A.4)we have f(s) = [n� k℄q!2�i ZC f(z)x0n(z)[xn(z)� xn(s)℄(n�k+1) dz: (A.5)
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